MATH180C: Introduction to Stochastic Processes II

https://mathweb.ucsd.edu/~ynemish/teaching/180c

Today: Martingales

Next: PK 8.1

Week 8:

Martingales

Definition. A stochastic process (Xn, n > 0) is a martingale if for n=0.1,... (a) $E(|X_n|) < \infty$

Thm Let (Xn)n >0 be a martingale with nonnegative values. For any 1>0 and me N

$$P(\max_{0 \le n \le m} X_n \ge \lambda) \le \frac{E(X_0)}{\lambda}$$

(b) E(Xn+1 | Xo, X1, ..., Xn) = Xn

(1)and $P(\max_{n\geq 0} X_n \geq \lambda) \leq \frac{E(X_0)}{\lambda}$ (2)

Example

A gambler begins with a unit amount of money and faces a series of independent fair games. In each game the gambler bets fraction p of his current fortune, wins with probability $\frac{1}{2}$, loses with probability $\frac{1}{2}$. Estimate the probability that the gambler ever doubles

the initial fortune.

Denote by Z_n , $n \ge 0$, the gambler's fortune after n-th game.

Denote { $Y_i : J_{i=1}^{\infty}$, i.i.d. with $P(Y_i = 1+p) = P(Y_i = 1-p) = \frac{1}{2}$

Then 2n = 1.113.10

Then $2n = y_1 \cdot y_2 \cdot \cdots \cdot y_n$ $E(y_i) = 1 \Rightarrow (2n)$ is a martingale, nonnegative

 $\Rightarrow P\left(\max_{n\geq 0} 2n 22\right) \leq \frac{E(2n)}{2} = \frac{1}{2}$

Martingale transform In the previous example the stake in n-th game is P Zn-1. What if we choose another strategy? Det Let (Xn)nzo be a nonnegative martingale, and (et (Cn)nzo be a stochastic process with Cn = fn (Xo,..., Xn-1). Then the stochastic process $Z_n := \sum_{k=1}^{\infty} C_k (X_k - X_{k-1}) = : (C \cdot X)_n (C \cdot X)_o = 0$ is called the martingale transform of X by C Think of - Xx-Xx-1 as the winning per unit stake in x-th game · Ck as your stake in K-th game decision is made based on the previous history . (C.X), as total winnings up to time n

Martingale transform Prop. Let Zn=X0+(C0X)n. Let Ck>0 bounded if Zk-1>0 and Cx=0 if Zx-1=0. Then (Zn)nzo is a martingale Proof: E(Zn+1/Zo,...,Zn) = E(Zn + Cn+1 (Xn+1-Xn)/Zo,-,Zn) = Zn + E(Cn+1 (Xn+1- Xh) /20,--, Zn) Note that 2n - 2n - = Cn(Xn - Xn - 1)If Zn>o, then C1>o,..., Cn>o, $X_1 = (2_1 - 2_0)C_1 + 2_0$, $X_n = (2_n - 2_{n-1})C_n + X_{n-1}$ and E(Zn+1/Zo,...,Zn)= Zn+ E(Cn+1(Xn+1-Xn)/Xo,...,Xn) = 2n + Cn+1 (E(Xn+1) Xo, --, Xn) - Xn) = 2n If Zn=0, then Cn+1=0 and E(2n1,120,..., 2n)=0=2n

Start from the initial fortune
$$X_0 = 1$$
.

Define $Z_n = 1 + (C \cdot X)_n \ge 0$

Then
$$(2n)$$
 is a nonnegative martingale, t
=) $P(\max_{n \ge 0} 2n \ge 2) \le \frac{1}{2}$

Convergence of nonnegative martingales Thm If (Xn)n20 is a nonnegative (super) martingale, then with probability 1 J lim Xn =: Xoo and E(X =) & E(X) Example An urn initially contains one red ball and one green ball. Choose a ball and return it to the urn together with another ball of the same color. Repeat. Denote by Xn the fraction of red ball after n iterations.

Example (cont.)

(i)
$$(X_n)_{n\geq 0}$$
 is a martingale

Denote by R_n the number of red balls after n -th iteration

 $R_n = X_n (n+2)$

Then

 $E(X_{n+1}|X_0,...,X_n) = X_n - \frac{R_n+1}{n+3} + (1-X_n) \cdot \frac{R_n}{n+3}$
 $= \frac{1}{n+3} (X_m R_n + X_n + R_n - X_n R_n) = \frac{1}{n+3} X_n (n+3)$

(ii) X_n is nonnegative $=$) $\exists \lim_{k \to \infty} X_n = : X_\infty$

(iii) Compute the distribution of X_∞
 $P(X_n = \frac{k}{n+2}) = \frac{1}{n+1} \quad \text{for } k \in \{1,2,...,n+1\}$
 $P(X_\infty \le x) = x \mid x \in (0,1) = 1 \quad X_\infty \sim \text{Unif}(0,1)$