MATH180C: Introduction to Stochastic Processes II

https://mathweb.ucsd.edu/~ynemish/teaching/180c

Today: Hitting probabilities.

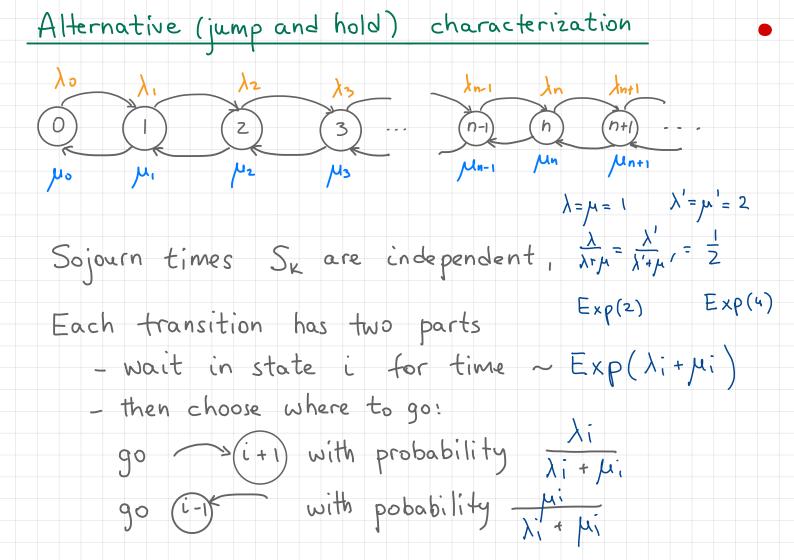
Absorption times. General CTMC.

Matrix exponentials

Next: PK 6.5, 6.6, Durrett 4.1

Week 2:

- HW1 due Friday, April 14 on Gradescope
 - Important: Midterm 1 will take place on Friday, April 28



Stopping times

Def (Informal). Let $(X_t)_{t \geq 0}$ be a stochastic process and let $T \geq 0$ be a random variable. We call T a stopping time if the event $\{T \leq t\}$ can be determined from the knowledge of the process up to time t (i.e., from $\{X_s: o \leq s \leq t\}$)

- 2. We is a stopping time
- 2. 100 15 00 31019 11112
- 3. sup {t20: X = i is not a stopping time

Strong Markov property Theorem (no proof) Let (Xt)to be a MC, let T be a stopping time of (Xt)t≥o. Then, conditional on T<∞ and X+=i, (X_{T+t})_{t≥0} (i) is independent of {Xs, 0 \le S \le T} (ii) has the same distribution as (Xt)tzo starting from i. Example (Xw, +t) +20 has the same distribution as (Xt)tes conditioned on Xo=i and is indep of what happened before

Alternative (jump and hold) characterization Proof cont. $G_i(t) = -(\lambda i + \mu i) G_i(t)$, $G_i(o) = 1$ 4 Gi(t) = e-(xi+pi)t = P(Sk>t | Xw=i) V GSk~ Exp(li+li) (given that the process sojourns in i) Suppose the process waits Exp (li+u:), then jumps to it with probability li/(li+mi) to i-1 with probability mi/(li+mi) $P_{i,i+1}(h) = P(S_k \le h \mid X_w = i) P(jump to i+1)$ $= (1-e^{-(\lambda i + \mu i)h}) \frac{\lambda i}{\lambda i + \mu i} = ((\lambda i + \mu i)h + o(h)) \frac{\lambda i}{\lambda i + \mu i} = \lambda i h + o(h)$ Pi, i-1 (h) = P(Sk = h | Xw=i) P(jump to i-1) = ((hi+ 4i)h+o(h)) Mi = Mi h+o(h)

Related discrete time MC. Ant My-1 Ant My Ant My+1 $\lambda_0 + \mu_0$ $\lambda_1 + \mu_1$ $\lambda_2 + \mu_2$ $\lambda_3 + \mu_3$ $\begin{array}{c|c}
\lambda_0 \\
\lambda_1 + \mu_1 \\
\hline
\end{array}$ $\begin{array}{c|c}
\lambda_1 \\
\lambda_1 + \mu_2 \\
\hline
\end{array}$ $\begin{array}{c|c}
\lambda_2 \\
\lambda_3 \\
\lambda_4 + \mu_2
\end{array}$ (n-1) 1 1 m (n+1) --- $\frac{\mu_1}{\lambda_1 + \mu_1}$ $\frac{\mu_2}{\lambda_2 + \mu_2}$ $\frac{\mu_3}{\lambda_3 + \mu_3}$ $\frac{\mu_4}{\lambda_4 + \mu_4}$ Def. Let (Xt)t20 be a continuous time MC, let Wn, n20, be the corresponding waiting (arrival, jump) times. Then we call (Yn) nzo defined by the jump chain of (X+)+20. $\frac{\lambda_0}{\lambda_0 t \mu_0} = \frac{\lambda_1}{\lambda_1 t \mu_1} = \frac{\lambda_2}{\lambda_2 t \mu_2} = \frac{\lambda_3}{\lambda_3 t \mu_3}.$ $\lambda_1 + \mu_1$ $\lambda_2 + \mu_2$ $\lambda_3 + \mu_3$ $\lambda_4 + \mu_4$ C random walk

Absorption probabilities for B&D processes

Let $(X_t)_{t\geq 0}$ be a birth and death process, and assume that the state 0 is absorbing, $\lambda_0 = 0$. Then $P((X_t)_{t\geq 0}$ gets absorbed in $0 \mid X_0 = i$

L, use the first step analysis to compute

the absorption probabilities for (Yn)n≥o

Denote Ui = P(Yn is absorded in 0 | Yo=i)

Then

Absorption probabilities for B&D processes

$$u_0 = 1$$
, $u_n = \frac{\mu_n}{\lambda_n + \mu_n} u_{n-1} + \frac{\lambda_n}{\lambda_n + \mu_n} u_{n+1}$

Rewrite $(\lambda_n + \mu_n) u_n = \mu_n u_{n-1} + \lambda_n u_{n+1}$
 $\lambda_n (u_{n+1} - u_n) = \mu_n (u_n - u_{n-1})$
 $u_{n+1} - u_n = \frac{\mu_n}{\lambda_n} (u_n - u_{n-1})$
 $u_{n+1} - u_n = \frac{\mu_n}{\lambda_n} (u_n - u_{n-1})$
 $u_{n-1} - u_n = \frac{\mu_n}{\lambda_n} (u_1 - u_n)$

Position probabilities for B&D processes

 $u_0 = 1$, u_{n+1}
 u_{n+1}

Absorption probabilities for B&D processes

Choose smallest u, ∈ [0,1] for which

Let $\sum_{k=1}^{\infty} P_k < \infty$. We are looking for the minimal solution that satisfies $u_n \in [0,1]$ $\forall n$. We rewrite (**) as

Mean time until absorption Let (Xt)t20 be a birth and death process. Denote T= min{t20: X+=0} absorption time and $W_i := E(T \mid X_o = i)$. Let (Yn) nzo be the jumps chain for (Xt)t20. N:= min { n > 0 : Yn = 0 } Then $W_i = E\left(\sum_{k=0}^{N-1} S_k \mid X_{o=i}\right) = \frac{1}{\lambda_i + \mu_i} + E\left(\sum_{k=1}^{N-1} S_k \mid X_{o=i}\right)$ = $\frac{1}{\lambda_{i} + \mu_{i}} + E\left(\sum_{k=1}^{N} S_{k} | X_{o} = i, Y_{i} = i+1\right) P(Y_{i} = i+1 | Y_{o} = i)$ + E (\(\S_k \) \(\X_0 = \i, \Y_1 = \i-1 \) P (\Y_1 = \i-1 \) \(\Y_0 = \i)

Mean time until absorption

$$\begin{cases} w_i = \frac{1}{\lambda_i + \mu_i} + \frac{\lambda_i}{\lambda_i + \mu_i} & w_{i+1} + \frac{\mu_i}{\lambda_i + \mu_i} \\ w_o = 0 \end{cases}$$

$$W_0 = 0$$

First step analysis for birth and death processes

Let $(X_t)_{t\geq 0}$ be a birth and death process of rates $((\lambda_i, \mu_i))$ with $\lambda_0 = 0$ (state 0 absorbing).

Denote T= min{t: Xt=0}, u= P(Xt gets absorbed in 0 (Xo=i)

Denote
$$T = \min\{t: X_t = 0\}$$
, $u_i = P(X_t \text{ gets absorbed in } 0 | X_0 = i)$
 $Wi = E(T | X_0 = i)$ and $p_j = \frac{\mu_1 \mu_2 - \mu_j}{\lambda_1 \lambda_2 - \mu_j}$. Then

$$\sum_{j=1}^{\infty} p_j - i \int_{j=1}^{\infty} p_j < \infty$$

$$\sum_{j=1}^{\infty} \frac{1}{\lambda_j p_j} + \sum_{k=1}^{\infty} p_k \sum_{j=k+1}^{\infty} \frac{1}{\lambda_j p_j}, \text{ if } \sum_{j=1}^{\infty} \frac{1}{\lambda_j p_j}$$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$

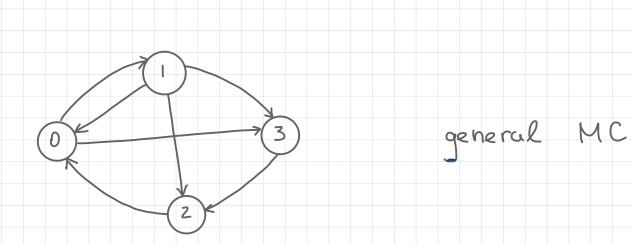
 $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{if } \sum_{j=1}^{\infty} \beta_{j} \\ \text{if } \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$

Birth and death processes. Results

- infinitesimal transition probability description
 sojourn time description (jump and hold)
 - sojourn times are independent exponential r.v.s $P(i \rightarrow i+1) = \frac{\lambda i}{\lambda i + \mu_i} \qquad P(i \rightarrow i-1) = \frac{\mu_i}{\lambda i + \mu_i}$
- system of differential equations for pure birth/death e.g. $P_i(t) = -\lambda_i P_i(t) + \lambda_{i-1} P_{i-1}(t)$
 - distributions of Xt for linear birth (geometric) and linear death (binomial) processes
- first step analysis giving absorption probabilities and mean time to absorption
- explosion, Strong Markov property etc.

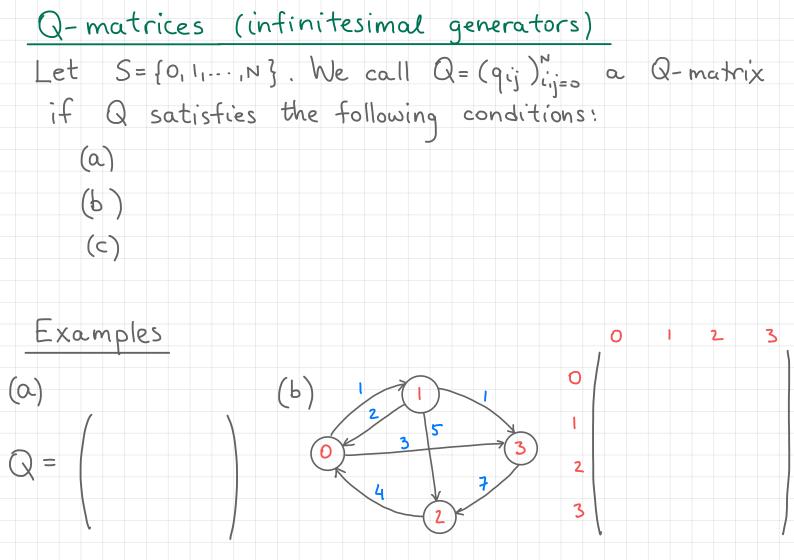
General continuous time MC

Assume for simplicity that the state space is finite



birth and death process

How to define? How to analyze?



Matrix exponentials

Let Q = (qij)ij=, be a matrix. Then the series converges componentwise, and we denote

its sum
$$\sum_{k=0}^{\infty} \frac{Q^k}{k!} =:$$
 the matrix exponential of Q.

In particular, we can define for t20.

Thm. Define
$$P(t) = e^{tQ}$$
. Then

(i) for all s,t

(ii) $(P(t))_{t\geq 0}$ is the unique solution to the equations

, and $\begin{cases} \frac{d}{dt} P(t) = \end{cases}$ $\left(\frac{d}{dt}P(t)=\right)$ P(0) =P(0) = .

Matrix exponentials

(b) $Q_2 = \begin{pmatrix} \lambda_1 & \delta_2 \\ \delta_1 & \lambda_2 \end{pmatrix}$

Properties are easy to remember -> scalar exponential (i) $e^{(t+s)Q} = e^{tQ} = e^{tQ} = e^{tA}$

(ii)
$$\frac{d}{dt} e^{tQ} = Qe = eQ$$
 ($\frac{d}{dt} e^{t\alpha} = \alpha e^{t\alpha}$)

$$\begin{pmatrix} (1) & \frac{d}{dt} & e & = & Q & \begin{pmatrix} \frac{c}{dt} & e & = & Q & \\ 0 & \frac{d}{dt} & e & = & Q & \end{pmatrix}$$

$$e = I \quad (e^{\circ} = I)$$

$$e = I \qquad (e^{\circ} = I)$$
Example

 $\begin{array}{c}
e = I \\
e = I
\end{array}$ (e°=1)

$$\begin{array}{c}
e = I & (e = 1) \\
Example & \\
(a) Q = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
\end{array}$$

Matrix exponentials Results on the previous slide hold for any matrix Q. Thm Matrix Q is a Q-matrix iff P(t) = e is a stochastic matrix Yt

