MATH180C: Introduction to Stochastic Processes II

https://mathweb.ucsd.edu/~ynemish/teaching/180c

Today: Absorption times.

General CTMC. Matrix exponentials
Next: 6.6, Durrett 4.1

Week 3:

HW2 due Friday, April 21 on Gradescope

Mean time until absorption Let (Xt)t20 be a birth and death process. Denote T= min{t20: X+=0} absorption time and $W_i := E(T \mid X_o = i)$. Let (Yn) nzo be the jumps chain for (Xt)t20. N:= min {n > 0 : Yn = 0 } Then $W_i = E\left(\sum_{k=0}^{N-1} S_k \mid X_{o=i}\right) = \frac{1}{\lambda_i + \mu_i} + E\left(\sum_{k=1}^{N-1} S_k \mid X_{o=i}\right)$ = $\frac{1}{\lambda_{i} + \mu_{i}} + E\left(\sum_{k=1}^{N} S_{k} | X_{o} = i, Y_{i} = i+1\right) P(Y_{i} = i+1 | Y_{o} = i)$ + E (\(\S_k \) \(\X_0 = \i, \Y_1 = \i-1 \) P (\Y_1 = \i-1 \) \(\Y_0 = \i)

Mean time until absorption

$$\begin{cases} w_i = \frac{1}{\lambda_i + \mu_i} + \frac{\lambda_i}{\lambda_i + \mu_i} & w_{i+1} + \frac{\mu_i}{\lambda_i + \mu_i} \\ w_o = 0 \end{cases}$$

$$W_0 = 0$$

First step analysis for birth and death processes

Let $(X_t)_{t\geq 0}$ be a birth and death process of rates $((\lambda_i, \mu_i))$ with $\lambda_0 = 0$ (state 0 absorbing).

Denote T= min{t: Xt=0}, u= P(Xt gets absorbed in 0 (Xo=i)

Denote
$$T = \min\{t: X_t = 0\}$$
, $u_i = P(X_t \text{ gets absorbed in } 0 | X_0 = i)$
 $Wi = E(T | X_0 = i)$ and $p_j = \frac{\mu_1 \mu_2 - \mu_j}{\lambda_1 \lambda_2 - \mu_j}$. Then

$$\sum_{j=1}^{\infty} p_j - i \int_{j=1}^{\infty} p_j < \infty$$

$$\sum_{j=1}^{\infty} \frac{1}{\lambda_j p_j} + \sum_{k=1}^{\infty} p_k \sum_{j=k+1}^{\infty} \frac{1}{\lambda_j p_j}, \text{ if } \sum_{j=1}^{\infty} \frac{1}{\lambda_j p_j}$$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$
 $i = \begin{cases} \sum_{j=1}^{\infty} p_j \\ j = 1 \end{cases}$

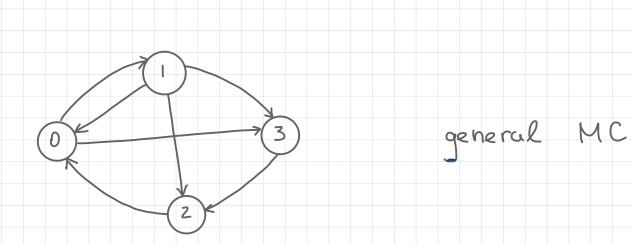
 $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{if } \sum_{j=1}^{\infty} \beta_{j} \\ \text{if } \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$ $U_{i} = \begin{cases} \sum_{j=1}^{\infty} \beta_{j} & \text{where } \beta_{i} \\ \text{where } \beta_{i} & \text{where } \beta_{i} \end{cases}$

Birth and death processes. Results

- infinitesimal transition probability description
 sojourn time description (jump and hold)
 - sojourn times are independent exponential r.v.s $P(i \rightarrow i+1) = \frac{\lambda i}{\lambda i + \mu_i} \qquad P(i \rightarrow i-1) = \frac{\mu_i}{\lambda i + \mu_i}$
- system of differential equations for pure birth/death e.g. $P_i(t) = -\lambda_i P_i(t) + \lambda_{i-1} P_{i-1}(t)$
 - distributions of Xt for linear birth (geometric) and linear death (binomial) processes
- first step analysis giving absorption probabilities and mean time to absorption
- explosion, Strong Markov property etc.

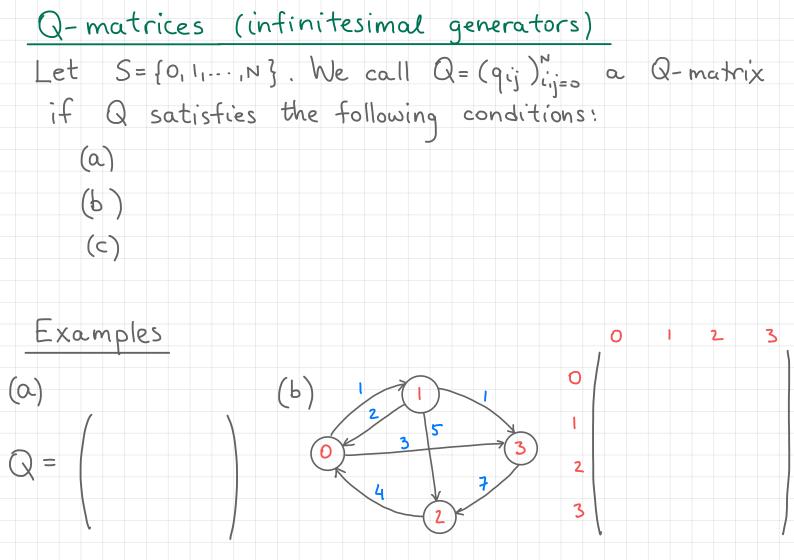
General continuous time MC

Assume for simplicity that the state space is finite



birth and death process

How to define? How to analyze?



Matrix exponentials

Let Q = (qij)ij=, be a matrix. Then the series converges componentwise, and we denote

its sum
$$\sum_{k=0}^{\infty} \frac{Q^k}{k!} =:$$
 the matrix exponential of Q.

In particular, we can define for t20.

Thm. Define
$$P(t) = e^{tQ}$$
. Then

(i) for all s,t

(ii) $(P(t))_{t\geq 0}$ is the unique solution to the equations

, and $\begin{cases} \frac{d}{dt} P(t) = \end{cases}$ $\left(\frac{d}{dt}P(t)=\right)$ P(0) =P(0) = .

Matrix exponentials

(b) $Q_2 = \begin{pmatrix} \lambda_1 & \delta_2 \\ \delta_1 & \lambda_2 \end{pmatrix}$

Properties are easy to remember -> scalar exponential (i) $e^{(t+s)Q} = e^{tQ} = e^{tQ} = e^{tA}$

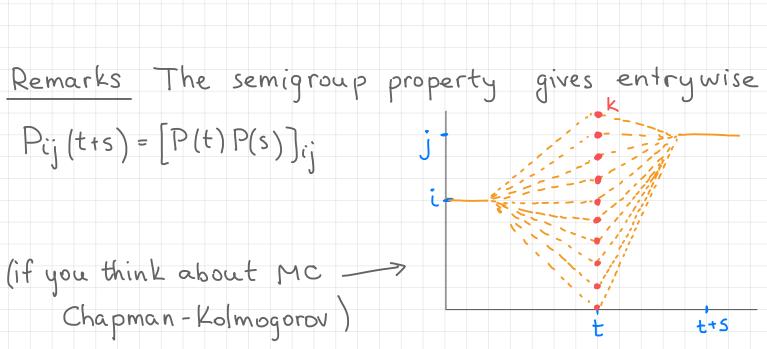
(ii)
$$\frac{d}{dt}e^{tQ} = Qe^{tQ} = e^{tQ} \left(\frac{d}{dt}e^{t\alpha} = \alpha e^{t\alpha}\right)$$

$$e = I \qquad (e = 1)$$
Example

$$\begin{array}{c}
0.0 \\
e = I \\
Example
\end{array}$$

$$\begin{array}{c}
e & = I \\
e & = I
\end{array}$$
(a) $Q_{-} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Matrix exponentials Results on the previous slide hold for any matrix Q. Thm Matrix Q is a Q-matrix iff P(t) = e is a stochastic matrix Yt



Main theorem

Let P(t) be a matrix-valued function tzo.

Consider the following properties

(a) Pij(t) ≥0, Z Pij(t)=1 for all i, j, t≥0

(a)
$$P(j(t) \ge 5$$
, $Z P(j(t) = 1)$ for all $(j, j(t) \ge 5)$
(b) $P(0) = I$

(c)
$$P(t+s) = P(t)P(s)$$
 for all $t_1 s \ge 0$

Theorem A. P(t) satisfies (a)-(d)
if and only if

Main theorem. Remarks

This theorem establishes one-to-one correspondance between matrices P(t) satisfying (a)-(d) and the Q-matrices of the same dimension.

as h > 0

1. Conditions (a)-(d) imply that P(t) is differentiable

2. If P(t)= eq, then P(h)=

P(h)=

Q-matrices and Markov chains

Let
$$(X_t)_{t\geq 0}$$
 be a continuous time MC, $X_t \in \{0,1,-1,N\}$

with right-continuous sample paths

Denote
$$P(j|t) = P(X_t = j | X_0 = i)$$
, $i,j \in \{0,1,...,N\}$

Then
$$P_{ij}(t), \sum_{j=0}^{N} P_{ij}(t) = \sum_{j=0}^{N} P(X_{t-j}|X_{0}=i)$$

Q-matrices and Markov chains (cont.) P(t) satisfies properties (a)-(d) from Theorem A. => there is a Q-matrix Q such that P(t)= In particular, P(h) = 1This implies the one-to-one correspondance between Q-matrices and continuous time MC with right-continuous sample paths. Q is called the infinitesimal generator of (XE)+20

Infinitesimal description of cont. time MC Let Q = (qij), be a Q-matrix, let (Xt)+20 be right-continuous stochastic process, Xt ∈ {0,1,..., N}. We call (Xt) t20 a Markov chain with generator Q, if (i) (Xt)t20 satisfies the Markov property (ii) P(X++h=j|X+=i)= Example The corresponding Q-matrix Pure death process · Pi,i-1 (h) = Mih + 0 (h) Q = | · Pii (h) = 1- mih + o(h) · Pij (h) = o(h) for j \$ {i-1, i}

Sojourn time description

Let $Q = (qij)_{i,j=0}$ be a Q-matrix. Denote $qi = \sum_{j\neq i} qij$

So that
$$Q = \begin{cases} q_{01} & q_{02} & \cdots & q_{n} = \sum_{i \neq 0} q_{0i} \\ q_{10} & q_{12} & \cdots & \vdots \\ q_{20} & q_{21} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ q_{n} & \vdots$$

Denote Yk := Xwk (jump chain). Then the MC with generator matrix Q has the following

equivalent jump and hold description · sojourn times Sk are independent r.v.

with P(Sk>t | Yk =i)=

Example

Example

Birth and death process on {0,1,2,3}