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1. (15 points) Let (Xt)t≥0 be a birth and death process on states {0, 1, 2, 3} with state 0 absorbing,
birth rates λ1 = 1, λ2 = 1 and the death rates µ1 = 1, µ2 = 1, µ3 = 1.

(a) (5 points) Draw the diagram of the jump chain of (Xt)t≥0, indicate the distribution of the
sojourn times. Is (Xt)t≥0 irreducible?

(b) (10 points) Suppose that X0, the state of the process at time t = 0, is uniformly dis-
tributed on the set {1, 2, 3}. Compute the expectation of the time at which the process is
absorbed in state 0.

Solution.

(a) The diagram of the jump chain of (Xt)t≥0 has the following form

0 1

Exp(2)

2

Exp(2)

3

Exp(1)

1
2

1
2

1
2

1
2

1

State 0 is absorbing. If (Yn)n≥0 is the embedded jump chain for (Xt)t≥0, then P (Yn ∈
{1, 2, 3}|Y0 = 0) = 0 for all n > 0. Thus (Xt)t≥0 is not irreducible.

(b) Denote by vi the expected time to absorption given that X0 = i, i ∈ {1, 2, 3}. Then, using
the first step analysis, v1, v2, v3 satisfy the following system of equations

v1 =
1

2
+

1

2
v2,

v2 =
1

2
+

1

2
v1 +

1

2
v3,

v3 = 1 + v2.

Substituting the first and the third equations into the second, we get

v2 =
1

2
+

1

2

(
1

2
+

1

2
v2

)
+

1

2
(1 + v2),

v2 =
5

4
+

3

4
v2,

v2 = 5, v3 = 6, v1 = 3.

Using the law of total probability, the average time to absorption at state 0 is equal to

1

3
v1 +

1

3
v2 +

1

3
v3 =

1

3
(3 + 5 + 6) =

14

3
.
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2. (15 points) Let (Xt)t≥0 be a birth and death process on states {0, 1, 2, 3} with birth rates
λ0 = 1, λ1 = 1, λ2 = 3 and the death rates µ1 = 1, µ2 = 1, µ3 = 1.

(a) (5 points) Determine the infinitesimal generator of (Xt)t≥0. Explain why (Xt)t≥0 is irre-
ducible.

(b) (10 points) Compute the stationary distribution for (Xt)t≥0. [Hint. Remember that there
are different ways of finding the stationary distribution]. What is the average fraction of
time that the process spends in state 3 in the long run?

Solution.

(a) The infinitesimal generator of (Xt)t≥0 is given by

Q =


−1 1 0 0
1 −2 1 0
0 1 −4 3
0 0 1 −1

 .

The diagram of the jump chain is

0 1 2 3

1

1
2

1
2

1
4

3
4

1

All states communicate, therefore the jump chain is irreducible. This implies that (Xt)t≥0
is also irreducible.

(b) Denote by (π0, π1, π2, π3) the stationary (limiting) distribution. Write the detailed balance
equations for (π0, π1, π2, π3)

π0 = π1 (1)

π1 = π2 (2)

3π2 = π3. (3)

Express π1, π2 and π3 in terms of π0

π1 = π0, π2 = π0, π3 = 3π0.

Substitute this into the equation π0 + π1 + π2 + π3 = 1 gives 6π0 = 1, so

π0 =
1

6
, π1 =

1

6
, π2 =

1

6
, π3 =

1

2
.

Therefore, in the long run, the process will spend π3 = 1
2 of time in states 3.
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3. (15 points) Let X and Y be random variables. Suppose that X ∼ Unif
(
[0, 10]

)
, and given

X = x, Y is distributed on [0, x] with quadratic density

fY |X(y|x) = αxy
2.

(a) (5 points) Determine αx.

(b) (5 points) Compute E(Y |X = x).

(c) (5 points) Compute E(Y ).

(a) In order to determine αx we use that
∫ x
0 αxy

2dy = 1 for all x ∈ [0, 10]∫ x

0
αxy

2dy = αx
x3

3
= 1 ⇒ αx =

3

x3
.

(b) Compute the conditional expectation

E(Y |X = x) =

∫ x

0
yfY |X(y|x)dy =

∫ x

0

3

x3
y3dy =

3

x3
x4

4
=

3

4
x.

(c) Now we compute E(Y ) by conditioning on X

E(Y ) =

∫ ∞
−∞

E(Y |X = x)fX(x)dx =

∫ 10

0

3

4
x · 1

10
dx =

3

40
· 100

2
=

15

4
.
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4. (15 points) John lives according to the following schedule. He starts his day by tossing a (fair)
coin. He tosses the coin once every second until the first heads comes up. Once the first heads
comes up, John turns on the TV and watches it for a random time with exponential distribution
with parameter 5 (in seconds). Then he immediately turns the TV off, goes back to tossing
the coin until the first heads comes up, and the whole process repeats anew.

In the long run, what is the probability that at a given moment during the day John is watching
TV? [To get the full credit, you have to model John’s behavior as a stochastic process and clearly
define all necessary objects and parameters related to this process before using any results from
the lectures.]

Solution. Denote by S(t) the process that describes John’s activity at time t with

S(t) =

{
0 if John tosses the coin at time t,
1 if John watches TV at time t,

where t = 0 corresponds to the time when John starts his day. Then S(0) = 0 and the (random)
moments of time when S(t) switches from state 1 to state 0 form a renewal process. Denote
this process (Xt)t≥0.

Let X1, X2, . . . be i.i.d. random variables with geometric distribution with parameter 1/2,
and let Y1, Y2, . . . be i.i.d. random variables with exponential distribution with parameter 5
independent of (Xi)i≥1. Random variables Xi represent the intervals of time during which John
tosses the coin. Random variables Yi represent the intervals of time during which John watches
TV.

Then (Xt)t≥0 is a two component renewal process with interrenewal times Zi = Xi + Yi. The
random variables Xi represents the time when S(t) = 0 with 0 ≤ Xi ≤ Zi.
The interrenewal times have finite expectations

E(Zi) = E(Xi) + E(Yi) = 2 +
1

5
=

11

5
<∞.

Therefore, it follows from the theorem about two component renewals (Lecture 20, page 7) that

lim
t→∞

P (S(t) = 0) =
E(X1)

E(Z1)
=

10

11
.

We conclude that

lim
t→∞

P (John watches TV at time t) = lim
t→∞

P (S(t) = 1) = 1− lim
t→∞

P (S(t) = 0) =
1

11
.
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5. (15 points) Let ξ1, ξ2, . . . be a sequence of independent identically distributed random variables
satisfying

P (ξi = 1) = p, P (ξi = −1) = 1− p.

Consider a discrete-time stochastic process (Xn)n≥0 with

X0 = 1, Xn = βSn ,

where Sn =
∑n

i=1 ξi, and β > 0 is a positive number.

(a) (5 points) Compute E(βξi).

(b) (10 points) Determine all values β > 0 for which Xn is a martingale.

Solutions.

(a) First, we compute E(βξi) for β > 0

E(β ξi) =
1− p
β

+ p β.

(b) If (Xn)n≥0 is a martingale, then for any n ≥ 0

E(Xn+1|X0, . . . , Xn) = E(βξn+1Xn|X0, . . . , Xn) = E(βξn+1)Xn = Xn.

Notice that for any n ≥ 0
β−n ≤ Xn ≤ βn.

Therefore, if (Xn)n≥0 is a martingale, then E(βξi) = 1 for all i ∈ N.

On the other hand, if E(βξi) = 1 for all i ∈ N, then E(Xn) = 1 for all n ∈ N, and (Xn)n≥0
is a (multiplicative) martingale (as shown in lecture 21). We conclude that (Xn)n≥0 is a
martingale if and only if E(βξ1) = 1.

Now we find all β > 0 such that E(βξ1) = 1. Using part (a) we see that this is equivalent
to finding all β > 0 such that

1− p
β

+ p β = 1.

If p = 0 or p = 1, then this equation has a unique solution β = 1. Suppose that p ∈ (0, 1).
Then the above equation can be rewritten as

β2 − 1

p
β +

1− p
p

= 0

with two solutions β = 1 and β = 1−p
p .

The solution β = 1 gives a (trivial) case Xn = 1 for all n ≥ 0.

For p ∈ (0, 1) the solution β = 1−p
p gives

Xn =
(1− p

p

)Sn

,

which is a multiplicative martingale.
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6. (15 points) The market price of a share is modeled by the Brownian motion with variance
parameter σ2 = 2 reflected at 0 (taking only positive values). Suppose that initially (at time
t = 0) the price of the share is equal to 10.

Determine the probability that at time t = 50 the price of the share is greater than 10, i.e.,
greater than the initial price. [Express the answer in terms of the CDF of the standard normal
distribution Φ(x).]

Solution. Let (Bt)t≥0 be a standard Brownian motion, and let (Rt)t≥0 be the price of the
share at time t.

It is given that (Rt)t≥ is the Brownian motion with variance σ2 = 2 reflected at 0, i.e.,

Rt = |10 +
√

2Bt|.

Therefore,

P (R50 > 10) = P (|10 +
√

2B50| > 10)

= P (|10 + 10B1| > 10)

= P (10 + 10B1 > 10) + P (10 + 10B1 < −10)

= P (B1 > 0) + P (B1 < −2)

=
1

2
+ (1− P (B1 < 2))

=
1

2
+ 1− Φ(2),

where we used that B1 has standard normal distribution.
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7. (15 points) Let (B 0
t )t≥0 be a Brownian bridge.

(a) (5 points) Compute P (|B 0
1/2| ≤ 1). [You can leave your answer in terms of Φ(x), the CDF

of the standard normal distribution.]

(b) (10 points) Fix real numbers α1, . . . , αn and 0 < t1 < · · · < tn < 1. Determine the
distribution of the random variable Z, where

Z :=

n∑
i=1

αiB
0
ti .

Solution.

(a) (B 0
t )1≤t≤1 is a Gaussian process with zero mean and covariance function Γ(s, t) = min{s, t}−

st. Thus,

Var(B 0
1/2) =

1

2
−
(1

2

)2
=

1

4

and

B 0
1/2 ∼ N

(
0,

1

4

)
.

Therefore,

P (|B 0
1/2| ≤ 1) = P

(
− 1 ≤ 1

2
B1 ≤ 1

)
= P

(
− 2 ≤ B1 ≤ 2

)
= Φ(2)− Φ(−2) = 2Φ(2)− 1,

where B1 ∼ N(0, 1).

(b) By using again that (B 0
t )1≤t≤1 is a Gaussian process with zero mean and covariance

function Γ(s, t) = min{s, t} − st we find that Z has normal distribution with zero mean.
It remains to compute the variance

Var(Z) = Cov(Z,Z)

= Cov
( n∑
i=1

αiB
0
ti ,

n∑
j=1

αjB
0
tj

)
=

n∑
i,j=1

αiαjCov
(
B 0
ti , B

0
tj

)
=

n∑
i,j=1

αiαj

(
min{ti, tj} − titj

)
.

We conclude that

Z ∼ N
(

0,

n∑
i,j=1

αiαj

(
min{ti, tj} − titj

))
.
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8. (15 points) Let (Xt)t≥0 be a pure birth process of rates (λk)
∞
k=0. We say that (Xt)t≥0 explodes

if the process (Xt)t≥0 makes infinitely many jumps in a finite time interval.

(a) (5 points) Let Wn be the nth waiting time of (Xt)t≥0. Compute E(e−Wn).

(b) (5 points) Prove that for any sequence of positive numbers (λn)∞n=0

∞∏
n=0

(
1 +

1

λn

)
≥
∞∑
n=0

1

λn
,

where
∞∏
n=0

(
1 +

1

λn

)
:= lim

k→∞

k∏
n=0

(
1 +

1

λn

)
.

(c) (5 points) Denote W∞ := limn→∞Wn ∈ (0,+∞)∪{+∞}. Use parts (a) and (b) to prove
that

if

∞∑
n=0

1

λn
= +∞, then P (W∞ = +∞) = 1.

[You do not have to justify switching the operations of taking the limit and taking the
expectation.]

Conclude from this the following implication

if
∞∑
n=0

1

λn
= +∞, then P

(
(Xt)t≥0 explodes

)
= 0.

Solution.

(a) Let S0, S1, . . . be the sojourn times of (Xt)t≥0. Then S0, S1, . . . are independent, Si ∼
Exp(λi) and Wn = S0 + · · ·+ Sn−1. Therefore,

E(e−Wn) = E
(
e−

∑n−1
i=0 Si

)
=

n−1∏
i=0

E
(
e−Si

)
. (4)

For each i ≥ 0 we have

E
(
e−Si

)
=

∫ ∞
0

e−xλie
−λixdx =

∫ ∞
0

λie
−(1+λi)xdx =

λi
1 + λi

,

which together with (4) gives

E(e−Wn) =

n−1∏
i=0

λi
1 + λi

. (5)

(b) First we show that for any k ≥ 0

k∏
n=0

(
1 +

1

λn

)
≥

k∑
n=0

1

λn
. (6)
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We prove (6) by induction on k. For k = 0 we have

1 +
1

λ0
≥ 1

λ0
. (7)

Suppose that
k∏

n=0

(
1 +

1

λn

)
≥

k∑
n=0

1

λn
. (8)

Then

k+1∏
n=0

(
1 +

1

λn

)
=
(

1 +
1

λk+1

) k∏
n=0

(
1 +

1

λn

)
(9)

=
k∏

n=0

(
1 +

1

λn

)
+

1

λk+1

k∏
n=0

(
1 +

1

λn

)
(10)

≥
k∑

n=0

1

λn
+

1

λk+1
(11)

=

k+1∑
n=0

1

λn
, (12)

where the inequality follows from (8) and
∏k
n=0

(
1 + 1

λn

)
≥ 1. This establishes the

induction step. Using the principle of mathematical induction we conclude that (6) holds

for all k ≥ 0. Since both sequences
∏k
n=0

(
1 + 1

λn

)
and

∑k
n=0

1
λn

are monotonically

increasing, their limits are well defined, and we have

∞∏
n=0

(
1 +

1

λn

)
= lim

k→∞

k∏
n=0

(
1 +

1

λn

)
≥ lim

k→∞

k∑
n=0

1

λn
=
∞∑
n=0

1

λn
. (13)

(c) Suppose that
∑∞

i=0
1
λi

= +∞. Then it follows from part (b) that

∞∏
i=0

(
1 +

1

λi

)
= lim

n→∞

n∏
i=0

(1 + λi
λi

)
= +∞. (14)

Combining this with equation (5) from part (a) we have

lim
n→∞

E(e−Wn) = lim
n→∞

n∏
i=0

λi
1 + λi

=
1

limn→∞
∏n
i=0

1+λi
λi

= 0. (15)

Wn is a non-decreasing sequence and e−Wn are non-negative, therefore, by the monotone
convergence theorem

lim
n→∞

E(e−Wn) = E( lim
n→∞

e−Wn) = E(e−W∞) = 0. (16)

(You do not need to justify switching between taking the limit and taking the expectation.)
Since e−W∞ ≥ 0 and E(e−W∞) = 0, we conclude that

P (e−W∞ = 0) = 1, (17)
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which implies that
P (W∞ = +∞) = 1. (18)

The event that (Xt)t≥0 explodes is equivalent to {W∞ < +∞}. Therefore, if
∑∞

i=0
1
λi

=
+∞, then

P
(
(Xt)t≥0 explodes

)
= P (W∞ < +∞) = 1− P (W∞ = +∞) = 0. (19)


