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1. (40 points) Let Y ∼ Exp(λ) for λ > 0, and let X ∼ Unif([0, Y ]).

(a) Compute E(X).

(b) Show that ∫ ∞
0

y2λe−λydy =
2

λ2
.

(c) Use part (b) to compute E(X2).

(d) Compute the variance Var(X) of the random variable X.

Solution.

(a) We compute E(X) by conditioning on the value of Y

E(X) =

∫ ∞
0

E(X|Y = y)λe−λydy. (1)

Since X ∼ Unif([0, Y ]), we find that E(X|Y = y) = y
2 . Thus,

E(X) =

∫ ∞
0

y

2
λe−λydy =

1

2
E(Y ) =

1

2λ
. (2)

(b) Using integration by parts we have∫ ∞
0

y2λe−λydy = −
∫ ∞
0

y2d
(
e−λy

)
= −y2e−λy

∣∣∣∞
0

+

∫ ∞
0

2ye−λydy =
2

λ
E(Y ) =

2

λ2
. (3)

(c) We compute E(X2) by conditioning again on the value of Y

E(X2) =

∫ ∞
0

E(X2|Y = y)λe−λydy =

∫ ∞
0

y2

3
λe−λydy =

2

3λ2
, (4)

where on the second step we used that E(X2|Y = y) = y2

3 , and on the last step we used
part (b).

(d) Finally,

Var(X) = E(X2)− (E(X))2 =
2

3λ2
− 1

4λ2
=
(2

3
− 1

4

) 1

λ2
=

5

12λ2
. (5)
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2. (30 points) The time intervals between two consecutive rainstorms in San Diego are indepen-
dent identically distributed random variables with density (in years)

f(x) =

{
2x, x ∈ (0, 1)
0, otherwise.

(6)

(a) Compute the long run expected time between the last rainstorm and the next rainstorm.

(b) What is the long run probability that it has been at most 6 months since the last rainstorm?

Solution.

(a) If δ(t) is the current life (age) of the renewal process at time t (time from the last rainstorm
to time t), and γ(t) is the residual life of the renewal process at time t (time until the next
rainstorm after time t), then we have to compute

lim
t→∞

E(δ(t) + γ(t)) = lim
t→∞

E(β(t)). (7)

Lecture 18, page 6:

lim
t→∞

E(β(t)) =
σ2 + µ2

µ
, (8)

where µ and σ2 are the mean and variance of the interrenewal times.

µ =

∫ 1

0
2x2dx =

2x3

3

∣∣∣1
0

=
2

3
, (9)

µ2 + σ2 =

∫ 1

0
2x3dx =

x4

2

∣∣∣1
0

=
1

2
, (10)

therefore

lim
t→∞

E(β(t)) =
3

4
. (11)

(b) In terms of the renewal process, the long run probability that it has been at most 6 months
since the last rainstorm is given by

lim
t→∞

P (δ(t) < 1/2). (12)

Lecture 17, page 4:

lim
t→∞

P (δ(t) < 1/2) =

∫ 1/2

0

1

µ
(1− F (x))dx, (13)

where F (x) is the interrenewal distribution. Note, that F (x) = 1 for x ≥ 1. For x ∈ (0, 1)

F (x) =

∫ x

0
2sds = x2. (14)

Therefore,

lim
t→∞

P (δ(t) < 1/2) =

∫ 1/2

0

3

2
(1− x2)dx =

3

2

(
x− x3

3

)∣∣∣∣1/2
0

=
11

16
. (15)
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3. (30 points) Suppose that a certain company is using age replacement policy for replacing light-
bulbs in its offices: a lightbulb is replaced either upon its failure, or after reaching age T > 0,
whichever comes first. Suppose that each replacement costs 1 dollar, but if it happens due
to a failure, then it incurs additional costs of 4 dollars per replacement. It is given that the
lifetime of a lightbulb has a uniform distribution on the interval [0,2].

Determine the optimal replacement age T (that minimizes the long run mean cost of the
replacement) and compute the long run mean replacement cost per unit of time for this choice
of T . Compare it to the costs of replacement upon failure.

Solution. Use age replacement strategy from Lecture 20. If the cost of one replacement is K
dollars, each replacement due to a failure costs additional c dollars, T is the replacement age
and the interrenewal distribution is given by F , then the long run replacement cost (per unit
of time) is given by

C(T ) =
K + cF (T )∫ T

0 (1− F (x))dx
. (16)

In our particular case, K = 1, c = 4 and

F (t) =


0, t ≤ 0,
t/2, 0 < t ≤ 2,
1, t > 2,

(17)

so ∫ T

0
(1− F (x))dx = T − T 2

4
(18)

for 0 ≤ T ≤ 2. Therefore,

C(T ) =
1 + 2T

T − T 2/4
. (19)

Find the minimum

C ′(T ) =
2T − T 2/2− (1 + 2T )(1− T/2)

(T − T 2/4)2
=
T 2/2 + T/2− 1

(T − T 2/4)2
= 0. (20)

Multiplying the numerator by 2, we get that the equation

T 2 + T − 2 = 0, (21)

which has two solutions, T = −2 and T = 1. Point T = 1 is the point of minimum of C(T ) on
(0, 2]. Therefore, the optimal long run replacement cost per unit of time is equal to

C(1) =
1 + 2

1− 1/4
= 4. (22)

The cost of replacement upon failure is K + c = 1 + 4 = 5 > 4.

The failure rate per unit of time is 1 (since the expected length of the interrenewal time is 1).
Therefore, the long-run replacement cost per unit of time without using the age replacement
policy is 5 · 1 = 5 > 4.

Therefore, the age replacement policy with the replacement age T = 1 will save the company
5− 4 = 1 dollars per unit of time in the long run.


