□ Write your name and PID on the top of EVERY PAGE.

 \Box Write the solutions to each problem on separate pages. CLEARLY INDICATE on the top of each page the number of the corresponding problem.

 \Box Remember this exam is graded by a human being. Write your solutions NEATLY AND COHERENTLY, or they risk not receiving full credit.

 \Box You may assume that all transition probability functions are STATIONARY.

- 1. (30 points) Let $(X_t)_{t\geq 0}$ be a birth and death process on states $\{0, 1, 2, 3\}$ with state 0 absorbing, birth rates $\lambda_1 = 2$, $\lambda_2 = 1$ and the death rates $\mu_1 = 1$, $\mu_2 = 1$, $\mu_3 = 1$.
 - (a) Draw the diagram of the jump chain of $(X_t)_{t\geq 0}$ and indicate the distribution of the sojourn times.
 - (b) Suppose that X_0 , the state of the process at time t = 0, is uniformly distributed on the set $\{1, 2, 3\}$. Compute the expectation of the time at which the process is absorbed at state 0.
- 2. (30 points) Let $(X_t)_{t\geq 0}$ be a continuous-time Markov chain on the state space $\{0, 1, 2\}$ with transition probability functions

$$P(t) = \begin{array}{c|cccc} 0 & 1 & 2 \\ 0 & \frac{1}{6} + \frac{3}{2}e^{-4t} - \frac{2}{3}e^{-3t} & \frac{1}{6} - \frac{3}{2}e^{-4t} + \frac{4}{3}e^{-3t} & \frac{2}{3} - \frac{2}{3}e^{-3t} \\ \frac{1}{6} + \frac{1}{2}e^{-4t} - \frac{2}{3}e^{-3t} & \frac{1}{6} - \frac{1}{2}e^{-4t} + \frac{4}{3}e^{-3t} & \frac{2}{3} - \frac{2}{3}e^{-3t} \\ 2 & \frac{1}{6} - \frac{1}{2}e^{-4t} + \frac{1}{3}e^{-3t} & \frac{1}{6} + \frac{1}{2}e^{-4t} - \frac{2}{3}e^{-3t} & \frac{2}{3} + \frac{1}{3}e^{-3t} \end{array}$$

- (a) Determine the distribution of the sojourn times of the process at states 0, 1 and 2.
- (b) In the long run, what fraction of time will the process $(X_t)_{t\geq 0}$ spend in state 0? [**Hint.** You can answer this question without solving any equations, and if you do so you should clearly state which results you use.]
- (c) Let $Q = (q_{ij})_{i,j=0}^2$ be the generator matrix of $(X_t)_{t\geq 0}$. Compute q_{10} . Suppose you observe the process jumping from state 2 to state 0. What is the average time that you have to wait until the next time you observe the jump from state 2 to state 0?
- 3. (30 points) Certain printing facility has two printers operating on a 24/7 basis and one repairman that takes care of the printers. The amount of time (in hours) that a printer works before breaking down has exponential distribution with mean 2. If a printer is broken, the repairman needs exponentially distributed amount of time with mean 1 (hour) to repair the broken printer. The repairman cannot repair two printers simultaneously. Each printer can produce 100 pages per minute.

Let X_t denote the number of printers in operating state at time t.

- (a) Assuming without proof that (X_t)_{t≥0} is a Markov process, determine the generator of (X_t)_{t≥0} (you can provide rigorous computations for only one entry of matrix Q.) [Hint. If T ~ Exp(γ), then P(T ≤ h) = γh + o(h) as h → 0.]
- (b) Compute the stationary distribution for $(X_t)_{t>0}$.
- (c) In the long run, how many pages does the facility produce on average per minute?