\square Write your name and PID on the top of EVERY PAGE.
\square Write the solutions to each problem on separate pages. CLEARLY INDICATE on the top of each page the number of the corresponding problem.
\square Remember this exam is graded by a human being. Write your solutions NEATLY AND COHERENTLY, or they risk not receiving full credit.
\square You may assume that all transition probability functions are STATIONARY.

1. (30 points) Let $\left(X_{t}\right)_{t \geq 0}$ be a birth and death process on states $\{0,1,2,3\}$ with state 0 absorbing, birth rates $\lambda_{1}=2, \lambda_{2}=1$ and the death rates $\mu_{1}=1, \mu_{2}=1, \mu_{3}=1$.
(a) Draw the diagram of the jump chain of $\left(X_{t}\right)_{t \geq 0}$ and indicate the distribution of the sojourn times.
(b) Suppose that X_{0}, the state of the process at time $t=0$, is uniformly distributed on the set $\{1,2,3\}$. Compute the expectation of the time at which the process is absorbed in state 0 .

Solution.

(a) The diagram of the jump chain of $\left(X_{t}\right)_{t \geq 0}$ has the following form

The probability $P_{i, i+1}$ (the probability of jumping from state i to state $i+1$) is equal to

$$
P_{i, i+1}=\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}},
$$

and, similarly,

$$
P_{i, i-1}=\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}
$$

The sojourn time in state i has exponential distribution with rate $\lambda_{i}+\mu_{i}$.
(b) Denote by v_{i} the expected time to absorption given that $X_{0}=i, i \in\{1,2,3\}$. Then, using the first step analysis, v_{1}, v_{2}, v_{3} satisfy the following system of equations

$$
\begin{aligned}
v_{1} & =\frac{1}{3}+\frac{2}{3} v_{2}, \\
v_{2} & =\frac{1}{2}+\frac{1}{2} v_{1}+\frac{1}{2} v_{3}, \\
v_{3} & =1+v_{2} .
\end{aligned}
$$

Substituting the first and the third equations into the second, we get

$$
\begin{aligned}
& v_{2}=\frac{1}{2}+\frac{1}{2}\left(\frac{1}{3}+\frac{2}{3} v_{2}\right)+\frac{1}{2}\left(1+v_{2}\right) \\
& v_{2}=\frac{7}{6}+\frac{5}{6} v_{2} \\
& v_{2}=7, \quad v_{3}=8, \quad v_{1}=5
\end{aligned}
$$

Using the law of total probability, the average time to absorption in state 0 is equal to

$$
\frac{1}{3} v_{1}+\frac{1}{3} v_{2}+\frac{1}{3} v_{3}=\frac{1}{3}(7+8+5)=\frac{20}{3}
$$

2. (30 points) Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous-time Markov chain on the state space $\{0,1,2\}$ with transition probability functions

$$
P(t)=\begin{array}{c|c|c}
0 & 1 & 2 \\
0 \\
1 \| \frac{1}{6}+\frac{3}{2} e^{-4 t}-\frac{2}{3} e^{-3 t} & \frac{1}{6}-\frac{3}{2} e^{-4 t}+\frac{4}{3} e^{-3 t} & \frac{2}{3}-\frac{2}{3} e^{-3 t} \| \\
1 \| \frac{1}{6}+\frac{1}{2} e^{-4 t}-\frac{2}{3} e^{-3 t} & \frac{1}{6}-\frac{1}{2} e^{-4 t}+\frac{4}{3} e^{-3 t} & \frac{2}{3}-\frac{2}{3} e^{-3 t} \| \\
2 \| \frac{1}{6}-\frac{1}{2} e^{-4 t}+\frac{1}{3} e^{-3 t} & \frac{1}{6}+\frac{1}{2} e^{-4 t}-\frac{2}{3} e^{-3 t} & \frac{2}{3}+\frac{1}{3} e^{-3 t} \|
\end{array} .
$$

(a) Determine the distribution of the sojourn times of the process in states 0,1 and 2 .
(b) In the long run, what fraction of time will the process $\left(X_{t}\right)_{t \geq 0}$ spend in state 0 ? [Hint. You can answer this question without solving any equations, and if you do so you should clearly state which results you use.]
(c) Let $Q=\left(q_{i j}\right)_{i, j=0}^{2}$ be the generator matrix of $\left(X_{t}\right)_{t \geq 0}$. Compute q_{10}. Suppose you observe the process jumping from state 2 to state 0 . What is the average time that you have to wait until the next time you observe the jump from state 2 to state 0 ?

Solution.

(a) The distribution of the sojourn times can be read off from the infinitesimal generator Q, and from the relation between the Markov semigroup $P(t)$ and Q we have that $Q=P^{\prime}(0)$. Therefore, to determine the distribution of the sojourn times it is enough to compute the derivatives of the diagonal entries of $P(t)$ at $t=0$

$$
P_{00}^{\prime}(0)=-4, \quad P_{11}^{\prime}(0)=-2, \quad P_{22}^{\prime}(0)=-1 .
$$

Thus, the sojourn times in states 0,1 and 2 have exponential distributions with rates $q_{0}=4, q_{1}=2, q_{2}=1$ correspondingly.
(b) Let $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ be the stationary distribution for the Markov chain $\left(X_{t}\right)_{t \geq 0}$. Then $\pi_{i}, i \in\{0,1,2\}$, gives the average long run fraction of time spent by the process in state i.
In order to compute π_{0}, note that from the theorem about the long run behavior of continuous time Markov chains, $P_{i 0} \rightarrow \pi_{0}$ as $t \rightarrow \infty$. If we take the limit in the above explicit formula for $P(t)$ we get

$$
\lim _{t \rightarrow \infty} P(t)=\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{6} & \frac{2}{3} \tag{1}\\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\
\frac{1}{6} & \frac{1}{6} & \frac{2}{3}
\end{array}\right)
$$

and thus on average in the long run the process spends $1 / 6$ of the time in state 0 .
(c) If Q is the infinitesimal generator of $\left(X_{t}\right)_{t \geq 0}$, then

$$
q_{10}=P_{10}^{\prime}(0)=0
$$

In particular this means that the process cannot jump directly from state 1 to state 0 ; the process can jump to state 0 only from state 2 .
In order to compute the average time required to observe the transition from 2 to 0 happening again, we can either apply the first step analysis, or use the theorem about the long run behavior of the continuous time Markov chains. I present below the second solution.
From the theorem about the long run behavior of the continuous time Markov chains,

$$
\pi_{i}=\frac{1}{q_{i} m_{i}},
$$

where m_{i} is the average return time to state i. From this we have that the average return time to 0 is given by

$$
m_{0}=\frac{1}{q_{0} \pi_{0}}=\frac{1}{4 \cdot \frac{1}{6}}=\frac{3}{2}
$$

If you observe the transition from state 2 to state 0 , then the return of the process to state 0 can only occur through a transition from 2 to $0\left(q_{10}=0\right.$, so the jumps from 1 to 0 are not allowed). Therefore, the average time to see again the transition from 2 to 0 is equal to $m_{0}=\frac{3}{2}$.
3. (30 points) Certain printing facility has two printers operating on a $24 / 7$ basis and one repairman that takes care of the printers. The amount of time (in hours) that a printer works before breaking down has exponential distribution with mean 2. If a printer is broken, the repairman needs exponentially distributed amount of time with mean 1 (hour) to repair the broken printer. The repairman cannot repair two printers simultaneously. Each printer can produce 100 pages per minute.
Let X_{t} denote the number of printers in operating state at time t.
(a) Assuming without proof that $\left(X_{t}\right)_{t \geq 0}$ is a Markov process, determine the generator of $\left(X_{t}\right)_{t \geq 0}$ (you can provide rigorous computations for only one entry of matrix Q.) [Hint. If $T \sim \operatorname{Exp}(\gamma)$, then $P(T \leq h)=\gamma h+o(h)$ as $h \rightarrow 0$.]
(b) Compute the stationary distribution for $\left(X_{t}\right)_{t \geq 0}$.
(c) In the long run, how many pages does the facility produce on average per minute?

Solution.

(a) The generator of $\left(X_{t}\right)_{t \geq 0}$ is given by

$$
\begin{equation*}
\left.Q= \right\rvert\, . \tag{2}
\end{equation*}
$$

Example of computations of $q_{i j}$.
$-X_{0}=1$ means that one printer is operating and one printer is broken.

- $X_{h}=0$ means that the operating printer stops working before time h and the broken printed is not repaired before time h, so

$$
\begin{align*}
& P\left(X_{h}=0 \mid X_{0}=1\right) \tag{3}\\
& =P(\text { printer's working time } \leq h) P(\text { printer's repair time }>h)+o(h) \tag{4}\\
& =\left(1-e^{-\frac{1}{2} h}\right) e^{-h}+o(h)=\frac{1}{2} h+o(h) \tag{5}
\end{align*}
$$

and $q_{10}=\frac{1}{2}$.

- $X_{h}=2$ means that the broken printer is repared before time h and the operating printer is still working at time h, so

$$
\begin{align*}
& P\left(X_{h}=2 \mid X_{0}=1\right) \tag{6}\\
& \quad=P(\text { repare time } \leq h) P(\text { working time }>h)+o(h) \tag{7}\\
& \quad=\left(1-e^{-h}\right) e^{-\frac{1}{2} h}+o(h)=h+o(h) \tag{8}
\end{align*}
$$

and $q_{12}=1$.
$-X_{0}=2$ means that both printers are working

- $X_{h}=1$ means that one of the two printers stops working before time h and the other is working at time h (note that there are two choices of which of the two is broken), so

$$
\begin{align*}
& P\left(X_{h}=1 \mid X_{0}=2\right) \tag{9}\\
& =2 P(\text { printer's working time } \leq h) P(\text { printer's working time }>h)+o(h) \tag{10}\\
& =2\left(1-e^{-\frac{1}{2} h}\right) e^{-\frac{1}{2} h}+o(h)=2\left(\frac{1}{2} h+o(h)\right)=h+o(h) \tag{11}
\end{align*}
$$

and $q_{21}=1$.
(b) Let $\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ be the stationary distribution. Then $\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ satisfies the following system

$$
\begin{align*}
-\pi_{0}+\frac{1}{2} \pi_{1} & =0 \tag{12}\\
\pi_{0}-\frac{3}{2} \pi_{1}+\pi_{2} & =0 \tag{13}\\
\pi_{1}-\pi_{2} & =0 \tag{14}\\
\pi_{0}+\pi_{1}+\pi_{2} & =1 \tag{15}
\end{align*}
$$

From the first and the third equations we have that $\pi_{0}=\frac{1}{2} \pi_{1}$ and $\pi_{2}=\pi_{1}$. Plugging this into the last equation gives

$$
\begin{equation*}
\pi_{1}\left(\frac{1}{2}+1+1\right)=\frac{5}{2} \pi_{1}=1 \tag{16}
\end{equation*}
$$

from which we get that

$$
\begin{equation*}
\pi_{0}=\frac{1}{5}, \quad \pi_{1}=\frac{2}{5}, \quad \pi_{2}=\frac{2}{5} . \tag{17}
\end{equation*}
$$

(c) In the long run, $\frac{1}{5}$ of the time both printers are broken printing 0 pages per minute, $\frac{2}{5}$ of the time only one printer is working producing 100 pages per minute and $\frac{2}{5}$ of the time both printer are working producing 200 pages per minute. Therefore, on average the printing facility produces

$$
\begin{equation*}
\frac{1}{5} \cdot 0+\frac{2}{5} \cdot 100+\frac{2}{5} \cdot 200=120 \tag{18}
\end{equation*}
$$

pages per minute.

