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1 Introduction

1.1 Background
Definition 1.1. An equation that contains derivatives of unknown functions is called a differential
equation.

Example 1.1.1. A falling object. By Newton’s second law:

F = ma

where F denotes an external force, m denotes mass and a is the acceleration.
Suppose one object is h meters above the ground. Let v, a be, respectively, the object’s velocity

and acceleration. Then we have

v(t) =
dh(t)

dt
= h′(t), a(t) =

d2h(t)

dt2
= h′′(t).

Now we study the force on the object. There are two forces: gravity and the air resistance. By
physics, gavity = mg where g is the gravity constant, and air resistance=1

2
ρAc|v|2 where ρ,A, c

are air density, cross sectional area and the drag coefficient. Note that the air resistance is pro-
portional to velocity’s square. By Newton’s second law, we obtain

mh′′(t) = −mg +
1

2
ρAc|h′(t)|2

which is a differential equation.

Definition 1.2. A differential equation always involves the derivative of one variable with respect
to another. The former is called a dependent variable and the latter an independent variable.

Definition 1.3. A differential equation involving only derivatives with respect to one independent
variable is called an ordinary differential equation (ODE). Otherwise it is called a partial dif-
ferential equation (PDE).

Definition 1.4. The order is the order of the highest derivatives present in the equation.

Definition 1.5. A linear differential equation is one in which the dependent variable and its
derivatives appear in additive combinations of their first powers. More precisely, linear differential
equation is of the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = f(x).

Example 1.1.2. d10y
dx10 + y + x100 + sin x = 0 is linear. While

√
y′ + 1 + x = 1, y′′ + y′ + y2 = 1

are nonlinear.
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1.2 Initial Value Problem
Definition 1.6. By an initial value problem for an nth-order differential equation, we mean

F (x, y,
dy

dx
, ...,

dny

dxn
) = 0,

y(x0) = y0,
dy

dx
(x0) = y1, ...,

dn−1y

dxn−1
(x0) = yn−1.

By an explicit solution to the above equation, we mean a function y = y(x) such that the above n
equalities hold.

The goal of this course is to solve several types of differential equations.

Example 1.2.1. Consider dy
dx

= f(x) with initial data y(0) = 1. Then the anti-derivatives of f are
solutions of the equation. We have

y(x) =

∫
f(x)dx = F (x) + C.

Use the initial data to solve for C: y(0) = F (0) + C = 1 implies y(x) = F (x) + 1− F (0).
For example: dy

dx
= 2e−x with initial data y(0) = 1. The solution y(x) = −2e−x + 3.

2 First Order Equations

2.1 Separable Equations
From example 1.2.1 we know that equations of the form dy

dx
= f(x) can be solved. More generally,

consider the equations of the following form.

Definition 2.1. Consider the equation dy
dx

= f(x, y). If f(x, y) = g(x)p(y) for some functions g, p,
then the differential equation is called separable differential equation.

Method of solving separable equations. Suppose

dy

dx
= g(x)p(y).

Then the implicitly defined solution is∫
1

p(y)
dy =

∫
g(x)dx.

Example 2.1.1. Solve dy
dx

= x2−1
y3+1

. (Give implicit solutions.)
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Example 2.1.2. Solve for the initial value problem

dy

dx
=

y − 1

x2 + 3
, y(−1) = 0.

(Compare the problem with Example 2 on textbook page 43.)

Solution. From the equation
dy

y − 1
=

dx

x2 + 3
,

and then ∫
dy

y − 1
=

∫
dx

x2 + 3
. (1)

Recall d
dx

arctanx = 1
1+x2 . By the chain rule

d

dx
arctan ax =

1

1 + (ax)2
d

dx
(ax) =

a

1 + a2x2
.

Therefore
d

dx
a arctan ax =

a2

1 + a2x2
.

Pick a = 1/
√
3. We get

d

dx

1√
3
arctan

x√
3
=

1/3

1 + (1/3)x2

which implies ∫
1

3 + x2
dx =

∫
1/3

1 + (1/3)x2
dx =

1√
3
arctan

x√
3
+ C.

Now it follows from (1),

ln |y − 1| = 1√
3
arctan

x√
3
+ C.

Then
|y − 1| = exp(

1√
3
arctan

x√
3
+ C) = C1 exp(

1√
3
arctan

x√
3
)

where C1 := eC and thus C1 > 0. Then

y = 1± C1 exp(
1√
3
arctan

x√
3
).

Because C1 is positive, we can replace ±C1 by C2 where C2 represents an arbitrary nonzero con-
stant. We have

y = 1 + C2 exp(
1√
3
arctan

x√
3
).

Since y(−1) = 0,

0 = 1 + C2 exp(
1√
3
arctan

−1√
3
).
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We get

C2 = − exp(
1√
3
arctan

1√
3
).

The solution is
y = 1− exp(

1√
3
arctan

x√
3
+

1√
3
arctan

1√
3
).

Remark 2.2. In the above problem, if without the initial condition, we have obtained that

y = 1 + C2 exp(
1√
3
arctan

x√
3
)

are solutions for all C2 ̸= 0. Note C2 = ±eC and thus the only constrain is C2 ̸= 0. However this
constrain can be removed. When C2 = 0, we get y = 1, a constant function. It is not hard to verify
that y = 1 is also a solution to dy

dx
= 0 = y−1

x2+3
.

2.2 Linear Equations
In this section we are going to deal with the equation of the form

dy

dx
+ P (x)y = Q(x). (2)

The key idea: multiply µ(x) on both sides of the equation and hope that we can combine the terms
µ(x) dy

dx
, µ(x)P (x)y by

µ(x)
dy

dx
+ µ(x)P (x)y =

d

dx
(µ(x)y).

Note the RHS
= µ(x)

dy

dx
+ µ′(x)y.

Then the requirement becomes a equation of µ:

µ′(x) = µ(x)P (x)

which is a separable equation. We get

µ(x) = exp(

∫
P (x)dx).

With this choice of µ, the original equation becomes

dy

dx
(µ(x)y) = µ(x)Q(x)

which has the solution
y(x) =

1

µ(x)
(

∫
µ(x)Q(x)dx).

This is often referred to as the general solution to (2). µ is called the integrating factor to (2).
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Example 2.2.1. Find the general solution to

1

x

dy

dx
− 3y

x2
= x3 cosx.

Solution. Step one. Write the equation into the standard form. Multiplying x on both sides,
we get

dy

dx
− 3y

x
= x4 cosx.

Step two. Calculating the integrating factor:

exp(

∫
−3

x
dx) = exp(−3 ln |x|+ C).

Since we only need one integrating factor, let us select C = 0 and suppose for the moment x > 0.
Then

µ(x) := exp(−3 ln x) =
1

x3
.

Step three. Multiply the integrating factor and do the computation. We have

1

x3

dy

dx
− 3

x4
= x cosx,

d

dx
(
1

x3
y) = x cosx.

Integrate both sides:
y

x3
=

∫
x cosxdx.

Apply integration by parts and then we get

y

x3
=

∫
x d sinx = x sinx−

∫
sinx dx = x sinx+ cosx+ C.

Thus the general solution is
y = x4 sinx+ x3 cosx+ Cx3.

Example 2.2.2. For the initial value problem

y′ =
√
1 + cos2 x− y, y(1) = 4,

find y(2).
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Solution. The standard form of the equation is

y′ + y =
√
1 + cos2 x.

Then
µ(x) = exp(

∫
1dx) = ex+C .

Take C = 0. Multiplying µ(x) on both sides of the equation gives

exy′ + exy = ex
√
1 + cos2 x.

Then
d

dx
(exy) = ex

√
1 + cos2 x

and we have
exy =

∫
ex
√
1 + cos2 xdx.

However this indefinite integral cannot be expressed in finite terms with elementary functions.
So instead of indefinite integral, let us do definite integral for x over [1, 2]. Then

(exy)
∣∣∣x=2

x=1
=

∫ 2

1

ex
√
1 + cos2 xdx.

By the initoal data

(exy)
∣∣∣x=2

x=1
= e2y(2)− ey(1) = e2y(2)− 4e.

Hence

y(2) = e−2(4e+

∫ 2

1

ex
√
1 + cos2 xdx)

which is the answer. We can use computer or the Simpson’s rule to approximate the value.

2.3 Exact Equations
Consider the following general first order equation:

dy

dx
= f(x, y). (3)

We can rewrite it into the following form:

f(x, y)dx− dy = 0.

Doing this we ignore the fact of viewing y as a dependent variable, and x as an independent
variable. But we are more focused on removing the “differentiations" and to obtain an implicit
defined solution.

For example
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Example 2.3.1. The solution to
xdx+ ydy = 0

is
x2 + y2 = C.

As for the equation
ydx− xdy = 0,

notice that it is the same as
ydx− xdy

y2
= 0.

The RHS is d(x
y
). Thus we get solutions

x

y
= C.

Definition 2.3. For any constant C, F (x, y) = C is said to be an implicit solution of (3) if

f(x, y) = −∂xF

∂yF
(4)

where ∂xF = ∂F
∂x

and ∂yF = ∂F
∂y

.

Remark 2.4. The derivation of (4). View y as a function of x, and then

d

dx
F (x, y) =

∂F

∂x
+

∂F

∂y

dy

dx
= 0,

which is the same as
dy

dx
= −∂xF

∂yF
.

Suppose

f(x, y) = −M(x, y)

N(x, y)
.

For instance, we can pick M(x, y) = −f(x, y) and N(x, y) = 1. Now let us rewrite (3) as

M(x, y)dx+N(x, y)dy = 0.

The advantage of this notation is that we don’t really distinguish the role of dependent variable (x)
and independent variable (y).

Definition 2.5. M(x, y)dx+N(x, y)dy is called a differential form. The differential form is said
to be exact if there is a function F (x, y) such that

∂xF (x, y) = M(x, y) and ∂yF (x, y) = N(x, y).

In such a case, we can write
dF = M(x, y)dx+N(x, y)dy
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which is called the total differential of F , and the equation

dF = M(x, y)dx+N(x, y)dy = 0

is called an exact equation.

Example 2.3.2. Consider
(2xy2 + 1)dx+ (2x2y)dy = 0.

It is an exact equation. Because F = x2y2 + x satisfies

dF = (2xy2 + 1)dx+ (2x2y)dy = 0.

Then F (x, y) = C, which is
x2y2 + x = C

is the general implicit solution to the oringinal equation.

Theorem 2.6. Test for Exactness. The differential form M(x, y)dx + N(x, y)dy is exact if and
only if

∂M

∂y
(x, y) =

∂N

∂x
(x, y).

Example 2.3.3. Solve
(2xy − sec2 x)dx+ (x2 + 2y)dy = 0.

Solution. Step one. Check exactness. Here M = 2xy − sec2 x and N = x2 + 2y. Because

∂yM = 2x = ∂xN,

the equation is exact.
Step two. View y as a constant and solve for F as a function of x. By exactness, there is F

such that
∂xF = M and ∂yF = N.

Then for some g(y),

F (x, y) =

∫
M(x, y)dx+ g(y) =

∫
(2xy − sec2 x)dx+ g(y)

= x2y − tanx+ g(y).

Step three. Solve for g. Now view y as a variable and x as a constant. Since ∂yF = N ,

N(x, y) = x2 + 2y = ∂y(x
2y − tanx+ g(y)).

Then
x2 + 2y = x2 + g′(y)
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which gives
g = y2.

And we have
F (x, y) = x2y − tanx+ y2.

The general solutions are given implicitly by

x2y − tanx+ y2 = C.

2.4 Integrating factors
Definition 2.7. If the equation

M(x, y)dx+N(x, y)dy = 0 (5)

is not exact, but for some function µ(x, y) the equation

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

is exact, then µ is called an integrating factor of (5).

In general finding integrating factors is a hard problem. In view of Theorem 2.6, µ is an
integrating factor is the same as µ satisfies

∂

∂y
[µ(x, y)M(x, y)] =

∂

∂x
[µ(x, y)N(x, y)].

This reduces to the equation

M∂yµ−N∂xµ = (∂xN − ∂yM)µ. (6)

Unfortunately solving this equation is as hard as solving the original equation. There are, however,
two exceptions.

If
1

N
(∂yM − ∂xN) (7)

is only a function of x, then we can assume that µ is also only a function of x. In such a case (6) is
reduced to

d

dx
µ =

µ

N
(∂yM − ∂xN), (8)

which is a separable differential equation and can be solved.
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Theorem 2.8. If (7) only depends on x (not y), then

µ = µ(x) = exp

(∫
1

N
(∂yM − ∂xN)dx

)
is an integrating factor for (5). Similarly if

1

M
(∂xN − ∂yM)

only depends on y, then

µ = µ(y) = exp

(∫
1

M
(∂xN − ∂yM) dy

)
is an integrating factor for (5).

Example 2.4.1. Solve
(2x2 + y)dx+ (x2y − x)dy = 0.

Solution. A quick inspection shows that this equation is neither separable nor linear. Let us try the
method given in the above theorem. Notice

∂yM = 1 ̸= (2xy − 1) = ∂xN.

Then the equation is not exact. We compute

1

N
(∂yM − ∂xN) =

1− (2xy − 1)

x2y − x
=

−2

x

which is a function of only x. So an integrating factor is given by

µ(x) = exp

(∫
−2

x
dx

)
= x−2.

After multiplying µ = x−2 on both sides of the equation, we get an exact equation

(2 + yx−2)dx+ (y − x−1)dy = 0.

Suppose it is the total differential of F . Then ∂xF = 2 + yx−2 which says that

F (x, y) = 2x− yx−1 + g(y)

for some function g(y). In view of ∂yF = y − x−1, we have

F (x, y) = 2x− yx−1 +
y2

2
.

and

F (x, y) = 2x− yx−1 +
y2

2
= C

are the solutions.
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Sometimes, we don’t really need to aim at making the whole differential form as a total differ-
ential of a function F .

Example 2.4.2. Solve
dy

dx
=

y + x2 cosx

x
.

Solution. We can rewrite the equation as

xdy − ydx = x2 cosxdx.

By the method we have just introduced, the integrating factor for the differential form xdy − ydx
equals

µ = µ(x) = x−2.

Multiplying µ, we get
xdy − ydx

x2
= cos xdx.

Since
d

dx

y

x
=

xdy − ydx

x2
, cosxdx = d sinx,

the equation becomes
d

dx

y

x
= d sinx.

The solutions are
y

x
+ sinx = C.

There are some useful total differential formulas:

ydx+ xdy = d(xy),
ydx− xdy

y2
= d

x

y
,

xdx+ ydy√
x2 + y2

= d
√
x2 + y2,

ydx− xdy

x2 + y2
= d arctan

x

y
,

xdx+ ydy

x2 + y2
=

1

2
d ln(x2 + y2), etc.

3 Linear Second-Order Equations

3.1 Homogeneous Linear Equations
In this section let us study the linear second-order constant-codfficient differential equation

ay′′ + by′ + cy = f(x). (9)
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First we study the homogeneous case when f(x) = 0.
Let us try a spatial solution of the form eλx. Substitute y = eλx into the equation

ay′′ + by′ + cy = 0. (10)

We get
eλx(aλ2 + bλ+ c) = 0.

Thus if λ is a solution to
aλ2 + bλ+ c = 0, (11)

which is called the characteristic equation (or the auxiliary equation), then eλx is a solution to
(10).

Example 3.1.1. Find the solutions to

y′′ + 2y′ − y = 0.

Find the solution to the equation with initial values y(0) = 0, y′(0) = −1.

Solution. First let us solve the characteristic equation

λ2 + 2λ− 1 = 0.

We get the roots are
λ1 = −1 +

√
2, λ2 = −1−

√
2.

Therefore we find two special solutions

y1 = eλ1x, y2 = eλ2x.

Since the equation is linear, any functions of the following form are solutions

y := C1y1 + C2y2 = C1e
(−1+

√
2)x + C2e

(−1−
√
2)x

where C1, C2 are any constants.
Now we solve for the initial value problem. By the condition

y(0) = C1 + C2 = 0,

y′(0) = C1(−1 +
√
2) + C2(−1−

√
2) = −1.

We obtain C1 = −C2 from the first equality. And then from the second, we have

−1 = C1(−1 +
√
2)− C1(−1−

√
2) = C12

√
2.

We have

C1 = −
√
2

4
, C2 =

√
2

4
.

Thus

y = −
√
2

4
e(−1+

√
2)x +

√
2

4
e(−1−

√
2)x.
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Now let us answer the question that how many solutions are there. We need the following
definition.

Definition 3.1. A pair of functions y1(x) and y2(x) is said to be linearly independent on an
interval I if NEITHER of them is a constant multiple of the other on I . We say that they are
linearly dependent is one of them is a constant multiple of the other.

Lemma 3.2. The Wronskian of y1(x), y2(x) is defined to be

W (y1, y2) := y1y
′
2 − y2y

′
1.

y1, y2 are linearly dependent on an interval I if and only if W (y1, y2)(x) = 0 for all x ∈ I .

Example 3.1.2. Say y1 = x + 1, y2 = ex. It can be checked that W (x + 1, ex) = xex. It does
not matter that xex = 0 at a single point x = 0. We have y1, y2 are linearly independent on any
interval in R e.g. [−1, 1].

Theorem 3.3. If y1, y2 are two solutions to (10) and they are linearly independent on R, then

{C1y1 + C2y2 with C1, C2 ∈ R}

are all the solutions to (10). In particular, if the characteristic equation (11) has two different real
roots λ1, λ2, then all the solutions to (10) are of the form

C1e
λ1x + C2e

λ2x,

where C1, C2 are constants.

The theorem is useful since it tells us that to find all solutions to (10), we only need to find
two linearly independent particular solutions. And we have already shown the way to find two
solutions if the characteristic function has two different real roots. Now we consider the case if the
characteristic function has only one repeated real root.

Theorem 3.4. It the characteristic function has only one repeated real root λ, then both y1(x) =
eλx and y2(x) = xeλx are solutions to (10). In such a case

y(x) = C1e
λx + C2xe

λx

with C1, C2 ∈ R, are the general solutions.

Example 3.1.3. Find a solution to the initial value problem

y′′ + 4y′ + 4y = 0; y(0) = 1, y′(0) = 3.
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Solution. The corresponding characteristic equation is

λ2 + 4λ+ 4 = 0

which has a repeated root λ = −2. Hence the general solutions to the differential equation are

y(x) = C1e
−2x + C2xe

−2x.

Using the initial data, we can solve for the value of C1, C2. We get

y(x) = e−2x + 5xe−2x.

Actually the same idea applies to high order equations.

Example 3.1.4. Find a general solution to

y′′′ + y′′ − 5y′ + 3y = 0.

Solution. The corresponding characteristic equation is

0 = λ3 + λ2 − 5λ+ 3 = (λ− 1)2(λ+ 3).

Then λ = 1 is a root with multiplicity 2 and λ = −3 is another root. It is not hard to check that
y1 = ex, y2 = xex and y3 = e−3x are solutions. The general solutions are then given by

y(x) = C1e
x + C2xe

x + C3e
−3x.

3.2 Complex roots
Consider the equation

ay′′ + by′ + cy = 0

and its characteristic function
aλ2 + bλ+ c = 0.

Suppose there are two complex roots to the characteristic function:

λ1 = α + βi, λ2 = α− βi.

Theorem 3.3 implies that all the solutions to the equation are of the form

C1e
λ1x + C2e

λ2x. (12)
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Notice here we have exponential function valued at a complex number. We introduce the well-
known Euler’s formula:

eiθ = cos θ + i sin θ.

Hence we have
e(α+iβ)x = eαxe(iβ)x = eαx cos(βx) + ieαx sin(βx),

e(α−iβ)x = eαxe(−iβ)x = eαx cos(βx)− ieαx sin(βx).

Now we pick C1 =
1
2
, C2 =

1
2

in (12), and then C1 = − i
2

and C2 =
i
2
. We get respectively that

the real and complex parts of the above particular solutions, which are

eαx cos(βx), eαx sin(βx),

are two linearly independent solutions to the original equations.
In view of Theorem 3.3, we have the following theorem.

Theorem 3.5. If the characteristic equation has two complex conjugate roots α ± iβ, then the
general real solutions to the equations are

y(x) = c1e
αx cos βx+ c2e

αx sin βx

where c1, c2 are arbitrary real numbers.

Example 3.2.1. Find the general solutions to

36y′′ − 12y′ + 37y = 0.

Solution. The corresponding characteristic equation is

36λ2 − 12λ+ 37 = 0.

The roots are
λ1,2 =

1

6
± i.

Therefore
ex/6 cosx, ex/6 sinx

are two linearly independent solutions. By Theorem 3.5, the general real solutions are

y(x) = c1e
x/6 cosx+ c2e

x/6 sinx

with c1, c2 ∈ R.

Example 3.2.2. Find the general solution to

y(4) + 13y′′ + 36y = 0.
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Solution. The corresponding characteristic equation is

λ4 + 13λ2 + 36 = 0.

Since
λ4 + 13λ2 + 36 = (λ2 + 4)(λ2 + 9),

the roots are
λ1,2 = ±2i, λ3,4 = ±3i.

Thus
cos 2x, sin 2x, cos 3x, sin 3x

are four linearly independent solutions. It follows from Theorem 3.5 that the general solutions are

y(x) = c1 cos 2x+ c2 sin 2x+ c3 cos 3x+ c4 sin 3x.

3.3 Undetermined Coefficients
In this section let us attack the nonhomogeneous equation with constant coefficients:

ay′′ + by′ + cy = f(x). (13)

In the following example, we first find one solution to the equation. We usually call any one
solution as a particular solution.

Example 3.3.1. Find a particular solution to

y′′ + 3y′ + 2y = 3x.

Solution. Let us try y = ax+ b. Plug in y = ax+ b into the equation, we get

the RHS = 3a+ 2ax+ 2b.

In order to have the RHS the same as the LHS, we need

3a+ 2b+ 2ax = 3x

which gives a = 3
2

and b = −9
4
. Thus y = 3

2
x− 9

4
is one solution.

Remark 3.6. The undetermined coefficient method:

1. If f = Σn
i=0aix

i, then in the case that r is not a root to the char. eqn. of the corresponding
homogeneous equation (aλ2 + bλ+ c = 0), we try

y(x) = Σn
i=0bix

i

and solve for {bi} (which are constants) to get one particular solution. Next

y(x) = x(Σn
i=0bix

i), if 0 is a single root of the char. eqn.

y(x) = x2(Σn
i=0bix

i), if 0 is a repeated root of the char. eqn.
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2. If f = (a0+a1x)e
rx, then in the case that r is not a root to the char. eqn. of the corresponding

homogeneous equation, we try

y(x) = (b0 + b1x)e
rx

and solve for b0, b1 to get one particular solution. We have

y(x) = x(b0 + b1x)e
rx, if r is a single root of the char. eqn.

y(x) = x2(b0 + b1x)e
rx if r is a repeated root of the char. eqn.

3. If f = a0 cos(rx) + a1 sin(rx), then we try

y(x) = b0 cos(rx) + b1 sin(rx) if ±ir are not the solutions to the char. eqn.

and solve for b0, b1 to get one particular solution. We have

b0x cos(rx) + b1x sin(rx) if ±ir are the solutions to the char. eqn. .

Example 3.3.2. Find a particular solution to

y′′ − 4y′ + 4y = e2t + 5e−3t.

Solution. Let us consider the following two equations separately:

y′′ − 4y′ + 4y = e2t, (14)

y′′ − 4y′ + 4y = 5e−3t. (15)

For the first equation try
y1(t) = ae2t

and we find
y′′1 − 4y′1 + 4y1 = 0

for all a. Also it is not possible to have y1(t) = ate2t being a solution. Let us try y1(t) = at2e2t.
Since

y′1 = 2ate2t + 2a2e2t,

y′′1 = 2ae2t + 8ate2t + 4at2e2t.

We get
y′′1 − 4y′1 + 4y1 = 2ae2t,

which implies a = 1
2

and y1 =
1
2
t2e2t is one solution to (14).

Now we try y2 = be−3t for the equation (15). We get

y′′2 − 4y′2 + 4y2 = (9b+ 12b− 4b)e−3t = 17be−3t.

19



Thus y2 = 5
17
e−3t is a solution to (15).

We claim that
y = y1 + y2 =

1

2
t2e2t +

5

17
e−3t

is a particular solution to the original equation. This is because

(y1 + y2)
′′ − 4(y1 + y2)

′ + 4(y1 + y2) = y′′1 − 4y′1 + 4y1 + y′′2 − 4y′2 + 4y2

= e2t + 5e−3t.

Example 3.3.3. Find the form for a particular solution to

y′′ − 2y′ + 3y = 2tet sin t.

Solution. Try
yp(t) = (a0 + a1t)e

t cos t+ (b0 + b1t)e
t sin t.

3.4 General solutions to Nonhomogeneous equation
Theorem 3.7 (Superposition Principle). If y1, y2 are respectively solutions to

ay′′ + by′ + cy = f1(x), ay′′ + by′ + cy = f2(x),

then k1y1 + k2y2 is a solution to

ay′′ + by′ + cy = k1f1(x) + k2f2(x).

Theorem 3.8. Suppose yp is a particular solution to

ay′′ + by′ + cy = f(x) (16)

and y1, y2 are two linearly independent solutions to the homogeneous equation

ay′′ + by′ + cy = 0.

Then the general solutions to (16) are (all solutions are of the following form)

yp + C1y1 + C2y2

with C1, C2 ∈ R.

Example 3.4.1. Given that yp(x) = x2 is a particular solution to

y′′ − y = 2− x2,

find a solution satisfying y(0) = 1, y′(0) = 0.
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Solution. The corresponding homogeneous equation,

y′′ − y = 0,

has the associated auxiliary equation λ2 − 1 = 0. The equation has λ = ±1 two different real
roots. So y1 = e±x are two linearly independent solutions to the homogeneous equation. We find
that the general solutions to the original nonhomogenous equation are

y(x) = x2 + C1e
x + C2e

−x.

To meet the initial conditions, set

y(0) = C1 + C2 = 1,

y′(0) = C1 − C2 = 0,

which yields C1 = C2 =
1
2
. The answer is

y(x) = x2 +
1

2
(ex + e−x) = x2 + coshx.

Example 3.4.2. A mass-spring system is driven by a sinusoidal external force (5 sin t + 5 cos t).
The equation is

my′′ + by′ + ky = Fext(t).

The mass m equals 1, the spring constant k = 2 and the damping coefficient b = 2. If the mass is
initially located at y(0) = 1 with velocity y′(0) = 2, find its equation of motion.

Solution. Since Fext(t) = 5 sin t+ 5 cos t, let us use the method of undetermined coefficients and
try

yp = A sin t+B cos t.

Plugging in yp into the equation and solving for A,B gives

yp = 3 sin t− cos t.

The associated homogeneous equation is

y′′ + 2y′ + 2y = 0.

Solve for the corresponding characteristic equation and we get two complex roots: −1± i. There-
fore the general solutions to the homogeneous equation are

C1e
−t cos t+ C2e

−t sin t.

The general solutions to the original nonhomogenous equation are

C1e
−t cos t+ C2e

−t sin t+ 3 sin t− cos t.

Finally the initial data implies that C1 = 2, C2 = 1, and thus the solution is

y(t) = 2e−t cos t+ e−t sin t+ 3 sin t− cos t.
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3.5 Variation of Parameters
Variation of parameters is a more general method (comparing to the undetermined coefficients
method) to find a particular solution to a linear second order equation.

Consider
ay′′ + by′ + cy = f(x) (17)

and suppose y1(x), y2(x) are two linearly independent solutions to

ay′′ + by′ + cy = 0.

Then we know that C1y1(x)+C2y2(x) are all solutions to the homogeneous equation. The variation
of parameters method is the strategy to replace the constants C1, C2 by functions i.e. we seek a
solution of the form

yp(x) = v1(x)y1(x) + v2(x)y2(x).

Let us formally plug yp into the RHS of the equation (17). Direct computation yields

y′p = v′1y1 + v′2y2 + v1y
′
1 + v2y

′
2.

Since v1, v2 give us two much freedom, it is hard to find the right ones. We impose the requirement

v′1y1 + v′2y2 = 0.

Such requirement is good, because it also simplifies the expression of y′p:

y′p = v1y
′
1 + v2y

′
2.

And then
y′′p = v′1y

′
1 + v′2y

′
2 + v1y

′′
1 + v2y

′′
2 .

Substituting yp, y
′
p, y

′′
p into (17), we find

f(x) = ay′′p + by′p + cyp

= a(v′1y
′
1 + v′2y

′
2 + v1y

′′
1 + v2y

′′
2) + b(v1y

′
1 + v2y

′
2) + c(v1(x)y1(x) + v2(x)y2(x))

= a(v′1y
′
1 + v′2y

′
2) + v1(ay

′′
1 + by′1 + cy1) + v2(ay

′′
2 + by′2 + cy2)

= a(v′1y
′
1 + v′2y

′
2).

To summarize, if we can find v1, v2 that satify

a(v′1y
′
1 + v′2y

′
2) = f(x),

v′1y1 + v′2y2 = 0,

then yp will be a particular solution.
Also notice in the above argument, we do not really used that a, b, c are constants. Indeed the

method applies to non-constant coefficients equation!
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Example 3.5.1. Find a general solution on (−π/2, π/2) to

y′′ + y = tan t.

Solution. Consider yp of the form
yp = v1y1 + v2y2

where v1, v2 are two functions and y1, y2 solves the homogeneous equation. So y1 = cos t and
y2 = sin t.

By the method of variation of parameter, we need v1, v2 to satisfy

v′1y
′
1 + v′2y

′
2 = tan t,

v′1y1 + v′2y2 = 0,

this is

− v′1 sin t+ v′2 cos t = tan t,

v′1 cos t+ v′2 sin t = 0.

This is a linear system for v′1, v
′
2. We get

v′1 = − tan t sin t, v′2 = sin t.

After integrating

v1 = −
∫

tan t sin tdt = −
∫

sin2 t

cos2 t
d sin t

= sin t− ln | sec t+ tan t|+ C,

v2 =

∫
sin tdt = − cos t+ C.

We only need one particular solution, so pick C = 0 in the above. We obtain

yp(t) = v1y1 + v2y2 = (sin t− ln | sec t+ tan t|) cos t− cos t sin t.

The general solutions are

y = C1 cos t+ C2 sin t− (cos t) ln | sec t+ tan t|).

Remark 3.9. The formula for v1, v2 is

v1 =

∫
−fy2

aW (y1, y2)
dx, v1 =

∫
fy1

aW (y1, y2)
dx.
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Example 3.5.2. Find a particular solution of the variable coefficient linear equation

t2y′′ − 4ty′ + 6y = 4t3

given y1 = t2 and y2 = t3 are solutions to the corresponding homogeneous equation.

Solution. Let us use the variation of parameter method. Write yp = v1y1 + v2y2. Given y1, y2, we
have

W (y1, y2) = y1y
′
2 − y′1y2 = t4.

Then

v1 =

∫
−fy2

aW (y1, y2)
dt =

∫
−4t3t3

t2(t4)
dt

=

∫
4dt = −4t+ C,

v2 =

∫
fy1

aW (y1, y2)
dt =

∫
4t3t2

t6

=

∫
4

t
dt = 4 ln |t|+ C.

Take C = 0. The particular solution is

yp = v1y1 + v2y2 = 4t3(−1 + ln |t|).

3.6 Variable-Coefficient Equations
In this section let us consider first- and second- order linear differential equation. Let us start with
the following two theorems concerning existence and uniqueness of solutions (in a local region) to
the initial value problems.

Theorem 3.10. Consider
y′ + p(x)y = f(x).

If p, f are continuous on an interval (a, b) that contains x0, then for any choice of the initial values
Y0, there exits a unique solution y(x) to the equation satisfying the initial data y(x0) = Y0.

Theorem 3.11. Consider
y′′ + p(x)y′ + q(x)y = f(x).

If p, q, f are continuous on an interval (a, b) that contains x0, then for any choice of the initial
values Y0, Y1, there exits a unique solution y(x) to the equation satisfying the initial data

y(x0) = Y0, y′(x0) = Y1.
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The following example is one problem in the first midterm.

Example 3.6.1 (Loss of uniqueness). Consider the initial value problem

dx

dt
=

(t+ 1)3

xt
, x(1) = 0.

Using the separable equation method, we get

1

2
x2 =

1

4
t4 + t3 +

3

2
t2 + t− 15

4
.

So there are actually two solutions:

x = ±
√

1

2
t4 + 2t3 + 3t2 + 2t− 15

2
.

Explain why this does not contradicts with theorem.

Definition 3.12. A linear second order equation that can be expressed in the form

ax2y′′(x) + bxy′(x) + cy(x) = f(x) (18)

where a, b, c are constants, is called a Cauchy-Euler, or equidimensinal equation.

The idea is to look for solutions of the form y = xr. Let us explain the idea through the
following example.

Example 3.6.2. Find two linearly independent solutions to

3t2y′′ + 11ty′ − 3y = 0, t > 0.

Solution. Let y = tr. Direct computation yields

y′ = rtr−1, y′′ = r(r − 1)tr−2.

Inserting these into the equation, we get

RHS = 3t2r(r − 1)tr−2 + 11trtr−1 − 3tr

= 3(r2 − r)tr + 11rtr − 3tr

= (3r2 + 8r − 3)tr.

To have RHS = 0, we only need r to be one root of 3r2 + 8r − 3 = 0. Hence r = 1
3

and −3. We
obtain two linearly independent solutions

y1 = t1/3, y2 = t−3.
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Method for (18): try y = xr. Then we get the associated characteristic equation:

ar2 + (b− a)r + c = 0.

1. the char. eqn. has two real roots r1, r2. xr1 , xr2 are two solutions.

2. the char. eqn. has one repeated real root r. xr, xr lnx are two solutions.

3. the char. eqn. has two complex roots α±βi. xα cos(β lnx), xα sin(β lnx) are two solutions.

Now let me check that in the case 2, y = xr lnx is indeed the solution. We have

y′ = rxr−1 lnx+ xr−1, y′′ = r(r − 1)xr−2 lnx+ (2r − 1)xr−2.

Plug them into the equation we get

ax2y′′ + bxy′ + cy = ar(r − 1)xr lnx+ a(2r − 1)xr + brxr lnx+ bxr + cxr lnx

= (ar2 + (b− a)r + c)xr lnx+ (2ar + b− a)xr

= 0.

Here we used that r = b−a
2a

is the repeated root.

Example 3.6.3. Find two linearly independent solutions to

(1). x2y′′ + 5xy′ + 5y = 0, (2). x2y′′ + xy′ = 0.

Solution. For (1), the associated characteristic equation is

r2 + 4r + 5 = 0,

which gives two complex roots r = −2± i. So the two solutions are

x−2 cos(lnx), x−2 sin(lnx).

For (2), the associated characteristic equation: r2 = 0, has a repeated root r = 0. So the two
solutions are

x0 = 1, lnx.

4 Laplace Transforms

4.1 Definition of Laplace Transform
Definition 4.1. Let f(t) be a function on [0,∞). The Laplace transform of f is the function F
defined by

F (s) :=

∫ ∞

0

e−stf(t)dt.

We usually use the notation F (s) = L{f}(s).
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Example 4.1.1. Determine the Laplace transform of

(1). f(t) = eat, t ≥ 0. (2). g(t) = 2χ[0,5].

Here χ[0,5] denotes the function that takes value 1 when x ∈ [0, 5] and value 0 otherwise.

Solution.

L{f} =

∫ ∞

0

e−steat dt = lim
N→∞

∫ N

0

e(a−s)t dt

= lim
N→∞

e(a−s)t

a− s

∣∣N
0
= lim

N→∞

(
e(a−s)N

a− s
− 1

a− s

)
.

When s ≤ a, the limit does not exist. When s > a, the limit equals 1
s−a

. So

L{f}(s) = 1

s− a

with the domain s > a.
Next

L{g} =

∫ ∞

0

e−st2χ[0,5] dt =

∫ 5

0

2e−st dt

=
2

s
− 2e−5s

s

when s ̸= 0. And when s = 0, L{g}(0) = 10.

Theorem 4.2 (Linearity of the transform). Let f1, f2 be functions whose Laplace transform exist
for s ∈ I and let c1, c2 be constants. Then for s ∈ I ,

L{c1f1 + c2f2}(s) = c1L{f1}(s) + c2L{f1}(s).

Existence of Laplace Transforms

Definition 4.3. A function f(t) is said to be piecewise continuous on [a, b] if f(t) is continu-
ous at every point in [a, b], except possibly for a finite number of points at which f has a jump
discontinuity.

A function f(t) is said to be piecewise continuous on [0,∞) if f is piecewise continuous on
[0, N ] for all N > 0.

Definition 4.4. A function f(t) is said to be of exponential order α if there exist T,M such that

|f(t)| ≤ Meαt, for all t ≥ T.
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Figure 1: Table of Laplace transforms

Example 4.1.2.

f(t) =


t, 0 < t ≤ 1,

2, 1 < t ≤ 2,

e5t sin 2t, t > 2,

is a piecewise continuous function in [0,∞) of exponential order α for all α ≥ 5.
However,

f(t) = et
2

, f(t) = ee
t

are functions of NO exponential order. They grow too fast at ∞.

Theorem 4.5. If f(t) is piecewise continuous on [0,∞) and of exponential order α, then L{f}(s)
exists for s > α.

Proof. We need to show that ∫ ∞

0

e−stf(t)dt

exists (converges) for s > α.
Since f is of exponential order α, there are T,M such that

|f(t)| ≤ Meαt, for t > T.

Hence write ∫ ∞

0

e−stf(t)dt =

∫ T

0

e−stf(t)dt+

∫ ∞

T

e−stf(t)dt.
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The first integral is finite because e−stf(t) is a bounded function and the domain is finite.
As for the second integral, we apply the comparison test. In view of

|f(t)| ≤ Meαt,

and ∫ ∞

T

e−stMeαtdt = M

∫ ∞

T

e−(s−α)tdt =
Me−(s−α)T

s− α
< ∞,

the second integral converges for all s > α.

4.2 Properties of the Laplace Transform
Theorem 4.6 (Translation). If L{f}(s) exists for s > α, then

L{eβtf(t)}(s) = L{f}(s− β)

for s > α + β.

Theorem 4.7 (Derivative). Let f(t) be continuous on [0,∞) and f ′(t) be piecewise continuous
on [0,∞), with both of exponential order α. Then for s > α,

L{f ′}(s) = sL{f}(s)− f(0).

Corollary 4.8 (Integral). The following equality holds whenever all the terms inside are well-
defined

L
{∫ t

0

f(τ)dτ

}
(s) =

1

s
L{f(t)}(s)

Theorem 4.9 (Higher-Order Derivatives). Let f(t), f ′(t), ..., f (n−1)(t) be continuous on [0,∞)
and f (n)(t) be piecewise continuous on [0,∞), with all these functions of exponential order α.
Then for s > α,

L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− ...− f (n−1)(0).

Theorem 4.10. [Multiple of a polynomial] Let F (s) = L{f}(s) for s > α. Then, for s > α,

L{tnf(t)}(s) = (−1)n
dnF

dsn
(s).

Example 4.2.1. Determine L{eat sin bt}.

Solution. Recall
L{sin bt}(s) = F (s) =

b

s2 + b2
.

Thus, by the translation property,

L{eat sin bt}(s) = F (s− a) =
b

(s− a)2 + b2
.
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Example 4.2.2. Determine L{t sin bt}.

Solution. We know
L{sin bt}(s) = F (s) =

b

s2 + b2
.

It follows from Theorem 4.10,

L{t sin bt} = −dF

ds
(s) =

2bs

(s2 + b2)2
.

Example 4.2.3. Determine L{sin2 t+ e3tt2}.

Solution. Since sin2 t = 1
2
(1− cos 2t),

L{sin2 t} =
1

2
L{1} − 1

2
L{cos 2t} =

1

2s
− s

2(s2 + 4)
.

Next,

L{e3tt2} =
d2

ds2
L{e3t}(s) = d2

ds2
1

s− 3
=

2

(s− 3)3
.

So
L{sin2 t+ e3tt2} =

1

2s
− s

2(s2 + 4)
+

2

(s− 3)3
.

Example 4.2.4. Prove Theorem 4.9 for n = 3.

Solution. Apply Theorem 4.7 for f and f ′:

L{f ′}(s) = sL{f}(s)− f(0),

L{f ′′}(s) = sL{f ′}(s)− f ′(0).

Applying Theorem 4.7 for f ′ and f ′′, we get

L{f (3)}(s) = sL{f ′′}(s)− f ′′(0).

Use the above three:

L{f (3)}(s) = sL{f ′′}(s)− f ′′(0)

= s(sL{f ′}(s)− f ′(0))− f ′′(0)

= s2L{f ′}(s)− sf ′(0)− f ′′(0)

= s3L{f}(s)− s2f(0)− sf ′(0)− f ′′(0).
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4.3 Inverse Laplace Transform
In this section we consider the problem of finding the inverse of Laplace transform. For example

Example 4.3.1. Given F (s) = 10
s3

, determine L−1{F}.

Solution. To compute the inverse Laplace transform, we refer to the Laplace transform table 1.

L−1(F )(t) = 5L−1

{
2

s3

}
= 5t2.

Theorem 4.11. [Linearity] c1, c2 ∈ R.

L−1{c1F1 + c2F2} = c1L−1{F1}+ c2L−1{F2}.

Example 4.3.2. Determine the inverse Laplace Transform of F (s) = 10
s3

+ s−1
s2−2s+5

.

Solution.

L−1(F )(t) = 5L−1

{
2

s3

}
+ L−1

{
s− 1

s2 − 2s+ 5

}
= 5t2 + L−1

{
s− 1

(s− 1)2 + 4

}
= 5t2 + et cos 2t.

4.3.1 Partial Fractions.

Sometimes in order to find the inverse Laplace transform, we need partial fractions.

Distinct roots. Suppose that the n numbers α1, ..., αn are pairwise distinct and that P (x) is a
polynomial with degree less than n. Then, there are constants C1, ..., Cn such that

P (x)

(x− α1)...(x− αn)
=

C1

x− α1

+ ...+
Cn

x− αn

.

Repeated roots. When we have repeated root, each factor (x − a)n contributes the following
sum of terms to the partial fraction decomposition

A1

(x− a)
+

A2

(x− a)2
+ ...+

An

(x− a)n
.

Quadratic factor. Irreducible quadratic factors (x2 + ax+ b)N contributes the following sum
of terms to the partial fraction decomposition

A1x+B1

(x2 + ax+ b)
+

A2x+B2

(x2 + ax+ b)2
+ ...+

ANx+BN

(x2 + ax+ b)N
.
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Example 4.3.3. Determine

L−1

{
s2 + 9s+ 2

(s− 1)2(s+ 3)

}
.

Solution. First let find the partial fractions. Known for some A,B,C,

s2 + 9s+ 2

(s− 1)2(s+ 3)
=

A

s− 1
+

B

(s− 1)2
+

C

s+ 3
.

After multiplying both sides by (s− 1)2(s+ 3) and evaluating at s = 1, s = −3, we obtain

B = 3, C = −1.

To find the value of A, let s = 0 in the above equality. We can get A = 2.
So

L−1

{
s2 + 9s+ 2

(s− 1)2(s+ 3)

}
(t) = L−1

{
2

s− 1
+

3

(s− 1)2
+

−1

s+ 3

}
= 2et + 3tet − e−3t.

Here we used, by Theorem 4.10,

L−1

{
1

(s− 1)2

}
= L−1

{
− d

ds

1

(s− 1)

}
= tL−1

{
1

s− 1

}
= tet.

Example 4.3.4. Determine

L−1

{
2s2 + 10s

(s2 − 2s+ 5)(s+ 1)

}
.

Solution. We know that the partial fraction expansion has the form

2s2 + 10s

(s2 − 2s+ 5)(s+ 1)
=

As+B

(s2 − 2s+ 5)
+

C

s+ 1
.

After solving for A,B,C, we get

2s2 + 10s

(s2 − 2s+ 5)(s+ 1)
=

3s+ 5

(s2 − 2s+ 5)
+

−1

s+ 1
=

3(s− 1) + 8

(s2 − 2s+ 5)
− 1

s+ 1
.

Hence

L−1

{
2s2 + 10s

(s2 − 2s+ 5)2(s+ 1)

}
= L−1

{
3(s− 1) + 8

(s2 − 2s+ 5)
− 1

s+ 1

}
= 3L−1

{
(s− 1)

(s− 1)2 + 4

}
+ 4L−1

{
2

(s− 1)2 + 4

}
− L−1

{
1

s+ 1

}
= 3et cos 2t+ 4et sin 2t− e−t.
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4.4 Solving Initial Value Problems
Given a equation y′′ + by′ + cy = f(x), we can apply Laplace transform on both sides. Let us
try this in the following example (and it turns out that we can use this idea to solve initial value
problems).

Example 4.4.1. Solve the initial value problem

y′′ − 2y′ + 5y = −8e−t; y(0) = 2, y′(0) = 12.

Solution. Let us apply the Laplace transform on both sides of the equation. Let us write L{y}(s) =
Y (s). Notice

L{y′}(s) = sY (s)− y(0) = sY − 2,

L{y′′}(s) = s2Y (s)− sy(0)− y′(0) = s2Y − 2s− 12.

Therefore the LHS becomes

L{y′′ − 2y′ + 5y} = s2Y − 2s− 12− 2(sY − 2) + 5Y.

While the RHS
L{−8e−t} =

−8

s+ 1
.

Using RHS = LHS, after the simplification, we get

Y (s) =
2s2 + 10s

(s2 − 2s+ 5)(s+ 1)
.

Recall Example 4.3.4, we have

y = L−1{Y } = 3et cos 2t+ 4et sin 2t− e−t.

Remark 4.12. One way for us to verify our solution is to check whether or not the obtained solution
satisfies the initial condition.

Before doing the following example, let us discuss one property of the Laplace transform. If
f(t) is piecewise continuous on [0,∞) and of exponential order, then

lim
s→∞

L{f}(s) = lim
s→∞

∫ ∞

0

e−stf(t)dt = 0.

Example 4.4.2. Solve the initial value problem

y′′ + 2ty′ − 4y = 1, y(0) = y′(0) = 0.
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Solution. Let us write L{y}(s) = Y (s). Taking Laplace transform on both sides of the equation
gives

L{y′′}(s) + 2L{ty′}(s)− 4L{y} =
1

s
.

Using the initial conditions, we find

L{y′′}(s) = s2Y − sy(0)− y′(0) = s2Y,

L{ty′}(s) = − d

ds
L{y′}(s) = − d

ds
(sY − y(0)) = −sY ′ − Y.

The equation becomes

Y ′ +

(
3

s
− s

2

)
Y =

−1

2s2
.

This is a linear first order equation and we can apply the integrating factor method to solve it.

µ(s) = exp

(∫
3

s
− s

2
ds

)
= s3e−s2/4

(Here, as before, we chose one integrating factor). Multiplying the equation of Y by µ, we obtain

d

ds
(µY ) =

d

ds
(s3e−s2/4Y ) = −s

2
e−s2/4.

Then
s3e−s2/4Y = −

∫
s

2
e−s2/4ds = e−s2/4 + C.

We get

Y (s) =
1

s3
+ C

es
2/4

s3
.

Since Y (s) → 0 as s → ∞. Then C has to be 0. Hence Y = 1
s3

, which implies that

y(t) =
t2

2
.

4.5 Transforms of Discontinuous Functions.
Let us start with the following definition. This is a typical example of a discontinuous function
with a jump singularity. (think about what other singularities can we have?)

Definition 4.13. The unit step function H(t) is defined by

H(t) =

{
0, t < 0,

1, t ≥ 0.
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Question. Can you draw the graph of H(t)?

Definition 4.14. The rectangular window function Πa,b(t) with b > a is defined by

Πa,b(t) = H(t− a)−H(t− b) =


0, t < a,

1, t ∈ [a, b),

0, t ≥ b.

Question. Can you draw the graph of Πa,b(t)?

Example 4.5.1. Write the function

f(t)


3, t < 2,

1, t ∈ [2, 5),

t, t ∈ [5, 8),

t2/10, t ≥ 8.

Solution. (Sketch the graph of f(t).) From the figure we want to window the function in the
intervals [0, 2), [2, 5), [5, 8), and to introduce a step for t ∈ [8,∞). We get

f(t) = 3Π0,2(t) + Π2,5(t) + tΠ5,8(t) + (t2/10)H(t− 8).

Remark 4.15. When we do integration of a function, the value is unaffected if the integrand’s value
at a single point is changed by a finite amount. Therefore sometimes, people do not specify a value
for Πa,t(t) at t = a, b. As a consequence, it is OK to write

f(t) = g(t)

where f(t) is given as the above and

g(t)


3, t < 2,

1, t ∈ (2, 5),

t, t ∈ (5, 8),

t2/10, t > 8

(the value of g is not specified at points 2, 5, 8).

Lemma 4.16. The Laplace transform of H(t− a) with a ≥ 0 is

L{H(t− a)}(s) = e−as

s

for s > 0.
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Proof.

L{H(t− a)}(s) =
∫ ∞

0

e−stH(t− a)dt

=

∫ ∞

a

e−stdt

= lim
N→∞

−e−st

s

∣∣N
a
=

e−as

s
.

Remark 4.17. Conversely, we have

L−1{e
−as

s
}(t) = H(t− a).

For the rectangular window function, we have

L{Πa,b(t)}(s) = L{H(t− a)−H(t− b)}(s) = e−sa − e−sb

s
.

Theorem 4.18. Let F (s) = L{f}(s) exist for s > α ≥ 0. If c > 0, then

L{f(t− c)H(t− c)}(s) = e−csF (s), (19)

and, conversely, an inverse Laplace transform of e−csF (s) is given by

L−1{e−csF (s)}(t) = f(t− c)H(t− c).

We skip the proof.

Example 4.5.2. Determine L{cos tH(t− π)}.

Solution. Let f(t) = cos(t + π) and then f(t − π) = cos t. Also notice that f(t) = − cos t. It
follows from (19) that

L{cos tH(t− π)} = L{f(t− π)H(t− π)}
= e−πsL{f(t)}
= e−πsL{− cos t}

= −e−πs s

s2 + 1
.

Here we used the formula L{cos at} = s
s2+a2

.

Example 4.5.3. Determine L−1
{

e−2s

s2

}
.
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Solution. Let us write F (s) = 1/s2 and then

f(t) := L−1{F}(t) = t.

In view of (19),

L−1
{
e−2sF (s)

}
= f(t− 2)H(t− 2) = (t− 2)H(t− 2).

Example 4.5.4. Determine

L−1

{
e−s

s(s2 + 4)

}
.

Solution. Let F (s) = 1
s(s2+4)

. By partial fractions, we get

1

s(s2 + 4)
=

1

4s
− 1

4

s

s2 + 4
.

Then

f(t) = L−1{F}(t) = L−1

{
1

4s

}
− L−1

{
1

4

s

s2 + 4

}
=

1

4
− 1

4
cos 2t.

Then as before (by (19))

L−1{e−sF (s)} = f(t− 1)H(t− 1) =

(
1

4
− 1

4
cos 2(t− 1)

)
H(t− 1).

4.6 Convolutions
When using Laplace transform to solve differential equations, it would be common that we need
to find the Laplace inverse of the product of two functions. The goal of this section is to introduce
the following formula

L−1{F (s)G(s)}(t) = L−1{F (s)}(t) ∗ L−1{G(s)}(t).

To do this we introduce convolutions.

Definition 4.19. Let f(t), g(t) be piecewise continuous functions on [0,∞). The convolution of
f(t) and g(t), denoted as (f ∗ g)(t) is defined by

(f ∗ g)(t) :=
∫ t

0

f(t− s)g(s)ds.
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Theorem 4.20 (Properties of Convolution). Let f(t), g(t), h(t) be piecewise continuous functions
on [0,∞) and k1, k2 be two constants. Then

f ∗ g = g ∗ f ; f ∗ (k1g + k2h) = k1(f ∗ g) + k2(f ∗ h);
(f ∗ g) ∗ h = f ∗ (g ∗ h).

Theorem 4.21 (Main). Let f(t), g(t) be piecewise continuous functions on [0,∞) with exponential
order α and set F (s) = L{f}(s), G(s) = L{g}(s). Then

L{f ∗ g}(s) = F (s)G(s),

or equivalently,
L−1{F (s)G(s)}(t) = (f ∗ g)(t).

Proof. By the definition of convolution

L{f ∗ g}(s) =
∫ ∞

0

e−st

∫ t

0

f(t− v)g(v)dvdt

=

∫ ∞

0

e−st

∫ ∞

0

H(t− v)f(t− v)g(v)dvdt

=

∫ ∞

0

g(v)

∫ ∞

0

e−stH(t− v)f(t− v)dtdv ( reverse the order of integration )

=

∫ ∞

0

g(v)

∫ ∞

v

e−stf(t− v)dtdv

=

∫ ∞

0

g(v)e−svF (s)dv

= F (s)G(s).

Example 4.6.1. Find L−1{1/(s2 + 1)2}.

Solution. Write
1

(s2 + 1)2
=

1

(s2 + 1)

1

(s2 + 1)
.

Since L−1{1/(s2 + 1)} = sin t, it follows from the convolution theorem that

L−1

{
1

(s2 + 1)2

}
= sin t ∗ sin t

=

∫ t

0

sin(t− v) sin v dv

=
1

2

∫ t

0

[cos(2v − t)− cos t]dv

=
1

2

[
sin(2v − t)

2

] ∣∣t
0
− 1

2
t cos t

=
sin t− t cos t

2
.
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We can also use this technique to find the inverse Laplace transform of s
(s2+a2)2

. Think about
how?

In the following, we show that Laplace transform can be used to solve integro-differential
equations.

Example 4.6.2. Solve

y′(t) = 1−
∫ t

0

y(t− v)e−2vdv, y(0) = 1.

Solution. The equation can be rewritten as

y′(t) = 1− y(t) ∗ e−2t.

Write Y = L{y}. Apply the transform on both sides of the equation, we get

sY − 1 =
1

s
− Y (

1

s+ 2
)

which simplifies to

Y (s) =
2

s
− 1

s+ 1
.

Hence y = 2− e−t.

Example 4.6.3. Use the function g to represent the solution y to

y′′ − y = g(t); y(0) = 1, y′(0) = 1.

Solution. Write Y,G as the Laplace transform of y, g. Then

s2Y − s− 1− Y = G.

We get

Y =
1

s− 1
+

G

s2 − 1
.

Hence

y(t) = L−1{ 1

s− 1
}+ L−1

{
1

s2 − 1
G(s)

}
= et + L−1

{
1

s2 − 1

}
∗ L−1 {G(s)}

= et + (sinh t) ∗ g(t).
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4.7 Dirac Delta Function
The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar
abstractions such as a point charge, point mass or electron point. For example, to calculate the
dynamics of a billiard ball being struck, one can approximate the force of the impact by a delta
function.

Definition 4.22. The Dirac delta function δ(t) is characterized by the following two properties

δ(t) =

{
0, t ̸= 0,

+∞ t = 0,

and ∫ ∞

−∞
f(t)δ(t)dt = f(0) (20)

for any function f(t) that is continuous on an open interval containing t = 0.

Approximation of δ function. Typically a nascent delta function ηϵ can be constructed in the
following manner. Let η be an absolutely integrable function on R of total integral 1, and define

ηϵ(x) = ϵ−1η(
x

ϵ
).

Then ηϵ(x) → δ(x) (weakly) as ϵ → 0. This can be seen in terms of the formulation of (20).

Since ∫ t

−∞
δ(x)dx =

{
0, t < 0,

1, t > 0,

which equals the unit step function H(x). So formally we have

δ(x) = H ′(x).

Laplace transform. By shifting the argument of δ(t), we have for δ(t− a) satisfying∫ ∞

−∞
f(t)δ(t− a)dt = f(a)

for any function f(t) that is continuous on an open interval containing t = a.
The Laplace Transform of δ:

L{δ(t− a)}(s) = e−as.

We give the following example:
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Example 4.7.1. A mass attached to a spring is released from rest 1 m below the equilibrium
position for the mass-spring and begins to vibrate. After π seconds, the mass is struck by a hammer
exerting an impulse on the mass. The system is governed by the symbolic initial value problem

x′′ + 9x = 3δ(t− π); x(0) = 1, x′(0) = 0,

where x denotes the displacement from equilibrium at time t. Find x(t).

Let X = L{x}. Since

L{x′′} = s2X − s and L{δ(t− π)}(s) = e−πs,

the equation can be transferred into

X(s) =
s

s2 + 9
+ e−πs 3

s2 + 9
.

Applying Theorem 4.18, we find

x(t) = cos(3t) + sin 3(t− π)H(t− π)

=

{
cos 3t, t < π,

cos 3t− sin 3t, t > π,

=

 cos 3t, t < π,
√
2 cos(3t+

π

4
), t > π.

5 Series Solutions of Differential Equation
In general, functions that can be explicitly represented by simple functions (like powers, log, and
trig functions etc.) are just a very small amount of functions among all (smooth) functions (If all
functions is a pool, functions that can be explicitly represented is like a water molecule which is
not even visible by human).

However series can represent a larger class of smooth functions (still not all). In this section
let us study series solutions of differential equations.

5.1 Power Series
Definition 5.1. A power series about a point x0 is an expression of the form

Σ∞
n=0an(x− x0)

n = a0 + a1(x− x0) + a2(x− x0)
2 + ...,

where x is a variable and an are constants. We say the series converges at x = c if Σ∞
n=0an(c−x0)

n

converges. If the limit does not exist, we say the series diverges at x = c.
Moreover if

Σ∞
n=0|an(c− x0)

n|
converges, we say the series converges absolutely at point x = c.
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Theorem 5.2. [Radius of convergence] The radius of convergence r is a nonnegative real number
or ∞ such that the series converges if |x− x0| < r, and diverges if |x− x0| > r.

r can be derived through the following formulas:

Root test. r =
1

lim supn→∞
n
√
an

,

Ratio test. when the following limit exists, it satisfies, r = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ .
Example 5.1.1. Determine the converge set of

Σ∞
n=0

(−2)n

n+ 1
(x− 3)n.

Theorem 5.3 (Vanishing Series). If Σ∞
n=0an(x − x0)

n = 0 for all x in some open interval, then
an = 0 for all n.

Sum of two Power Series.
Given two power series:

f(x) = Σ∞
n=0anx

n, g(x) = Σ∞
n=0bnx

n.

Then
f(x) + g(x) = Σ∞

n=0(an + bn)x
n.

Product of two Power Series.

f(x)g(x) = (Σ∞
n=0anx

n)× (Σ∞
n=0bnx

n)

= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + ...

The general formula is

f(x)g(x) = Σ∞
n=0cnx

n with cn := Σn
k=0akbn−k. (21)

This is called the Cauchy Product.

Theorem 5.4 (Differentiation and Integration). If

f(x) = Σ∞
n=0anx

n

has a positive radius of convergence r, then f is differentiable in the interval |x| < r:

f ′(x) = Σ∞
n=1nanx

n−1.

Also f has antiderivatives in |x| < r:∫
f(x)dx = Σ∞

n=0

an
n+ 1

xn+1 + C.
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Remark 5.5. We can replace x in the above theorem by (x− x0).
If we inductively apply the first part of the theorem, we know that f is nth differentiable for all

n ≥ 1.

Example 5.1.2. Find the power series for 1
1−x

.

Solution.
1

1− x
= 1 + x+ x2 + ... = Σ∞

0 xn. (22)

The radius of convergence is 1.

Example 5.1.3. Find a power series for each of the following functions:

(a)
1

1 + x2
, (b)

1

(x− 1)2
, (c) arctan x.

Solution. Replacing x by −x2 in (22), we get

1

1 + x2
= 1− x2 + x4 − ... = Σ∞

0 (−1)nx2n. (23)

For (b), since 1
(1−x)2

is the derivative of 1
1−x

, by differentiating (22) twice, we get

(
1

1− x
)′ =

1

(1− x)2
= 1 + 2x+ 3x2 + ... = Σn

1nx
n−1.

For (c), notice

arctanx =

∫ x

0

1

1 + t2
dt.

Therefore we can integrate the series (23) to get

arctanx =

∫ x

0

1

1 + t2
dt

= Σ∞
0

∫ x

0

(−1)nt2ndt

= Σ∞
0

(−1)nx2n+1

2n+ 1
.

Shifting the Summation index.

Example 5.1.4. Express the series

Σ∞
n=2n(n− 1)anx

n−2

as a series where the generic term is xk.
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Solution. Set k = n− 2. Then

Σ∞
n=2n(n− 1)anx

n−2 = Σ∞
k=0(k + 2)(k + 1)ak+2x

k.

(This is like doing substitution in the summation index.)

Example 5.1.5. Show that the identity

Σ∞
n=1nan−1x

n−1 + Σ∞
n=2bnx

n+1 = 1

implies that a0 = 1, a1 = a2 = 0 and an = − bn−1

n+1
for n ≥ 3.

Solution. The identity can be rewritten into

a0 + 2a1x+ 3a2x
2 + Σ∞

n=4nan−1x
n−1 + Σ∞

k=3bk−1x
k = 1,

and then
(a0 − 1) + 2a1x+ 3a2x

2 + Σ∞
k=3(k + 1)akx

k + Σ∞
k=3bk−1x

k = 0.

Thus we have
a0 = 1, a1 = a2 = 0, (k + 1)ak + bk−1 = 0 for k ≥ 3.

5.1.1 Analytic Functions

Definition 5.6. A function f is said to be analytic at x0 if, in an open interval about x0, this function
is the sum of a power series Σ∞

n=0an(x− x0)
n that has a positive radius of convergence.

Property: If f = Σ∞
n=0an(x−x0)

n and the power series has radius of convergence r > 0, then
f(x) is analytic in |x− x0| < r.

Example 5.1.6.

ex = 1 + x+
x2

2!
+

x3

3!
+ ...

sinx = x− x3

3!
+

x5

5!
− ...

cosx = 1− x2

2!
+

x4

4!
− ...

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + ...

Can you derive the second and the third equality from the first one? Can you derive the fourth
equality from Example 5.1.2?

How to compute the coefficients an?
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Suppose around point x0,

f(x0) = a0 + a1(x− x0) + a2(x− x0)
2 + ...

Then

a0 = f(x0), a1 = f ′(x0), a2 =
f ′′(x0)

2!
, a3 =

f (3)(x0)

3!
...

In general
an = f (n)(x0)/n!.

The equality

f(x) = Σ∞
n=0

f (n)(x0)

n!
(x− x0)

n

is often referred to as the Taylor expansion of f at point x = x0.

5.2 Power Series Solutions
We begin with the differential equation

y′′ + p(x)y′ + q(x)y = 0.

Definition 5.7. Let us call a point an ordinary point if p, q are analytic at x0. Otherwise it is called
a singular point.

Example 5.2.1. Determine the singular point of

xy′′ +
x

1− x
y′ + (sinx)y = 0.

Solution. Dividing the equation by x, we get

p(x) =
1

1− x
, q(x) =

sinx

x
.

When x ̸= 0, 1, then p(x), q(x) are ratios of non-zero analytic functions. Therefore p(x), q(x) are
analytic.

Let us consider for x = 0, 1. As for p(x), it is not defined at x = 1, hence x = 1 is singular.
We consider q(x). Notice

sinx

x
=

x− x3

2!
+ ...

x
= 1− x2

3!
+ ...

Therefore q is analytic everywhere.

If a equation has no singular point in an interval I , then we expect that it has power series
solutions in that interval.
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Example 5.2.2. Find a power series solution about x = 0 to

y′ + 2xy = 0.

Solution. The coefficient of the equation is analytic in R. We expect a solution is of the form

y = a0 + a1x+ a2x
2 + a3x

3 + ... = Σ∞
n=0anx

n.

The goal is to find an.
By direct computations

y′ = a1 + 2a2x+ 3a3x
2 + ... = Σ∞

n=1nanx
n−1.

From the equation,
Σ∞

n=1nanx
n−1 + 2xΣ∞

n=0anx
n = 0

which simplifies to
Σ∞

n=1nanx
n−1 + Σ∞

n=02anx
n+1 = 0.

Use the shifting property, the above is equivalent to

Σ∞
n=0(n+ 1)an+1x

n + Σ∞
n=12an−1x

n = 0.

We obtain
a1 + Σ∞

n=1 ((n+ 1)an+1x
n + 2an−1x

n) = 0.

By setting the coefficients to be zero, we get

a1 = 0, (n+ 1)an+1x
n + 2an−1x

n for all n ≥ 1.

This provides a recurrence relation:

an+1 = − 2

n+ 1
an−1.

Let us start with n = 1:
a2 = −a0.

If we keep using the recurrence formula, we get

a4 =
1

2
a0, a6 = − 1

3!
a0, ... a2n =

(−1)n

n!
a0, ...

If we start with n = 2, we get

a3 = −2

3
a1 = 0, a5 = −2

5
a3 = 0, ... a2n+1 = 0, ...

Submitting the values of an into the series, we obtain a series solution y which is

y = Σ∞
n=0

(−1)n

n!
a0x

2n.
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Example 5.2.3. Find the first four terms in the power series expansion about x = 0 for a general
solution to

(1 + x2)y′′ − y′ + y = 0.

What you need to do if the question is for the series expansion about point x = 2?

Solution. Since 1
1+x2 is analytic in R, then x = 0 is an ordinary point for the equation. Let us

express the general solution in the form

y(x) = Σ∞
n=0anx

n.

Substituting this expansion into the equation yields

0 = (1 + x2)Σ∞
n=2n(n− 1)anx

n−2 − Σ∞
n=1nanx

n−1 + Σ∞
n=0anx

n

= Σ∞
n=2n(n− 1)anx

n−2 + Σ∞
n=2n(n− 1)anx

n − Σ∞
n=1nanx

n−1 + Σ∞
n=0anx

n

= Σ∞
k=0(k + 2)(k + 1)ak+2x

k + Σ∞
k=2k(k − 1)akx

k − Σ∞
k=0(k + 1)ak+1x

k + Σ∞
k=0akx

k.

This implies

(zero order terms) 2a2 − a1 + a0 = 0,

(first order terms) 6a3 − 2a2 + a1 = 0,

(kth order terms with k ≥ 2)

(k + 2)(k + 1)ak+2 − (k + 1)ak+1 + (k2 − k + 1)ak = 0.

Let us view a0, a1 as known constants. Then use the first equation we get a2. Next use the
second one we get a3. Finally apply the last one iteratively for k = 2, 3, ... we are able to find the
values for ak with k ≥ 4.

In the end we have

y(x) = a0

(
1− 1

2
x2 − 1

6
x3 +

1

12
x4 + ...

)

+a1

(
x+

1

2
x2 − 1

8
x4 + ...

)
.

6 Linear Systems
In this section, we study systems of differential equations. By systems, we mean there are more
than one differential equations and there are more than one unknown variable. For example

47



Example 6.0.1.

x′
1 = 2x1 + t2x2 + (4t+ et)x4,

x′
2 = (sin t)x2 + (cos t)x3,

x′
3 = x1 + x2 + x3 + x4,

x′
4 = x1.

Linear systems or equations can be represented using matrices and vectors. And it turns out
that such representation is helpful even in solving the system. Therefore, let us discuss matrices
and vectors in the next subsection.

6.1 Matrices and vectors
A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.
An m× n matrix is with m rows and n columns:

A :=

a11 a12 ... a1n
a21 a22 ... a2n
am1 am2 ... amn

 .

We can simply write [aij] ∈ Rm×n to denote the matrix.

Square matrices: m = n.

Diagonal matrices: aij = 0 for all i ̸= j.

(Column ) Vectors: m× 1 matrices. (Row ) Vectors: 1×m matrices.

Zero matrix: aij = 0 for all i, j, denoted as 0.

Can you write the system in Example 6.0.1 into a matrix form where the matrix only depend
on the free variable?

6.1.1 Algebra of Matrices

Scalar Multiplication. Let r ∈ R and A = [aij] be a matrix. Then

rA = [raij].

We write
−A := (−1)A = [−aij]

Matrix Addition. We can add up two m × n matrices. Suppose A = [aij], B = [bij] are two
m× n matrices, then

A+B = [aij + bij], A−B = [aij − bij].
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If two matrices have different numbers of rows or columns, we can not add the matrices up.
Matrix Multiplication. Let A = [aij] be a m× n matrix and let

B =


b1
b2
...
bn


be a n-dimensional column vector. Then

AB =

a11 a12 ... a1n
a21 a22 ... a2n
am1 am2 ... amn



b1
b2
...
bn

 =


a11b1 + a12b2 + ...a1nbn
a21b1 + a22b2 + ...a2nbn

...
am1b1 + am2b2 + ...amnbn

 .

For example 1 2 3
4 5 6
7 8 9

01
2

 =

 0 + 2 + 6
0 + 5 + 12
0 + 8 + 18

 =

 8
17
26

 .

In general, we are able to define AB if A is an m× n matrix and B is an n× p matrix:

AB =

a11 a12 ... a1n
a21 a22 ... a2n
am1 am2 ... amn

b11 b12 ... b1p
b21 b22 ... b2p
bn1 bn2 ... bnp



=


a11b11 + a12b21 + ...a1nbn1 ... a11b1p + a12b2p + ...a1nbnp
a21b11 + a22b21 + ...a2nbn1 ... a21b1p + a22b2p + ...a2nbnp

...
am1b11 + am2b21 + ...amnbn1 ... am1b1p + am2b2p + ...amnbnp

 .

If we denote C := AB then C = [cij] is a m× p matrix and for i = 1, ...,m, j = 1, ..., p

cij = Σn
k=1aikbkj.

Theorem 6.1. Suppose A,B,C are matrices and r is a number. The following holds as long as
they are well-defined:

A+B = B + A, r(A+B) = rA+ rB,

(AB)C = A(BC), A(B + C) = AB + AC.

Example 6.1.1. Let A,B be two n× n matrices. Remove the bracket of (A+B)2.

Solution.
(A+B)2 = A2 + AB +BA+B2.

Note that this is not the same as A2 + 2AB +B2. In matrices multiplication, AB ̸= BA.
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Example 6.1.2.  3
2

−1 1
2

1
2

0 −1
2

−3
2

1 1
2

1 2 1
1 3 2
1 0 1

 =

1 0 0
0 1 0
0 0 1

 .

People often call the square matrix on the RHS of Example 6.1.2 as the Identity matrix de-
noted as I or I3. Let us denote the two square matrices on LHS of Example 6.1.2 as A,B. Then

AB = I.

Then A is called the inverse matrix of B. Also we call B as the inverse matrix of A.

Theorem 6.2. If AB = I , then BA = I .

Example 6.1.3. (not required) Find the inverse of

A =

1 2 1
2 0 1
0 2 1


Solution. Augment with a identity matrix: 1 2 1 1 0 0

2 0 1 0 1 0
0 2 1 0 0 1

 .

Reduce the matrix to row echelon form:

 1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗

 .

 1 2 1 1 0 0
0 −4 −1 −2 1 0
0 2 1 0 0 1

 →

 1 2 1 1 0 0
0 1 1

4
1
2

−1
4

0
0 2 1 0 0 1

 →

 1 2 1 1 0 0
0 1 1

4
1
2

−1
4

0
0 0 1

2
−1 1

2
1



→

 1 2 1 1 0 0
0 1 1

4
1
2

−1
4

0
0 0 1 −2 1 2


Reduce the matrix to row echelon form:

 1 0 0 ∗ ∗ ∗
0 1 0 ∗ ∗ ∗
0 0 1 ∗ ∗ ∗

 .

 1 0 1
2

0 1
2

0
0 1 1

4
1
2

−1
4

0
0 0 1 −2 1 2

 →

 1 0 0 1 0 −1
0 1 1

4
1
2

−1
4

0
0 0 1 −2 1 2

 →

 1 0 0 1 0 −1
0 1 0 1 −1

2
−1

2

0 0 1 −2 1 2

 .
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The inverse matrix is  1 0 −1
1 −1

2
−1

2

−2 1 2

 .

Determinants. A square matrix is invertible if and only if its determinant is not zero.

• The determinant of a 2× 2 matrix:

det(A) =

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

• The determinant of a 3× 3 matrix:

det(A) =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
• Similarly we define the determinant for n× n square matrix.

Example 6.1.4. Can you compute the determinate of the matrix in Example 6.1.3.

6.2 Linear Systems in Normal Form
Example 6.2.1. Write the following linear system in matrix notation:

xt = −4x+ 2y,

yt = 4x− 4y.

Solution. [
x
y

]′
=

[
−4 2
4 −4

] [
x
y

]
.

Example 6.2.2. Write the following coupled mass-spring system in matrix notation.

2x′′ + 6x− 2y = 0,

y′′ + 2y − 2x = 0.

Solution. We introduce

x1 := x, x2 := x′, x3 := y, x4 := y′.
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Then

x′
1 = x2, x′

2 = −3x1 + x3,

x′
3 = x4, x′

4 = 2x1 − 2x3.

We get 
x1

x2

x3

x4


′

=


0 1 0 0
−3 0 1 0
0 0 0 1
2 0 −2 0




x1

x2

x3

x4

 .

In general we say that a system of n linear differential equations is in a normal form if it is
expressed as

x′(t) = A(t)x(t) + f(t)

where for each t, x(t), f(t) are n× 1 vectors and A(t) is an n× n matrix.

Theorems Part.

Theorem 6.3. If A(t), f(t) are continuous in an open interval I which contains point t0, then for
any choice of initial vector x0, there exists a unique solution x(t) to the initial value problem:

x′(t) = A(t)x(t) + f(t), x(t0) = x0.

Definition 6.4. m vector functions x1, ...,xm are said to be linearly dependent on interval I if
there exist constants c1, ..., cm, not all zeros, such that

c1x1 + ...+ cmxm = 0

for all t ∈ I . They are said to be linearly independent on I if they are not linearly dependent on
I .

Theorem 6.5. Let x1, ...,xn be n n× 1 vector functions on I . Suppose each xi is a solution to the
same linear system x′ = A(t)x on I . Then they are linearly independent if and only if∣∣∣∣∣∣∣∣∣

x11(t) x12(t) . . . x1n(t)
x21(t) x22(t) . . . x2n(t)

...
...

...
xn1(t) xn2(t) . . . xnn(t)

∣∣∣∣∣∣∣∣∣ ≠ 0

for one single t in I.

Example 6.2.3. Show that the vector functions

x1(t) =

 e2t

0
e2t

 , x2(t) =

 e2t

e2t

−e2t

 , x3(t) =

 e2t

2e2t

e2t


are linearly independent on (−∞,∞).
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Solution. Notice

x1(t) = e2t

 1
0
1

 , x2(t) = e2t

 1
1
−1

 , x1(t) = e2t

 1
2
1

 .

We only need to compute the following determinate and show it is not zero:∣∣∣∣∣∣
1 1 1
0 1 2
1 −2 1

∣∣∣∣∣∣ = 1×
∣∣∣∣ 1 2
−2 1

∣∣∣∣− 1×
∣∣∣∣ 0 2
1 1

∣∣∣∣+ 1×
∣∣∣∣ 0 1
1 −2

∣∣∣∣ = 5− (−2)− 1 ̸= 0.

Theorem 6.6. If xp is a particular solution to the system

x′(t) = A(t)x(t) + f(t) (24)

on the interval I and {x1, ...,xn} is a fundamental solution set (xi is a solution; the n solutions
are linearly independent) to the homogeneous system, then every solution to (24) is of the form

x = xp + c1x1 + ...+ cnxn

where c1, ..., cn are constants.

6.3 Homogeneous Linear System
Consider the homogeneous constant coefficients system

x′(t) = Ax(t).

Recall that for homogeneous equation x′ + ax = 0 or x′′ + ax′ + bx = 0, the most basic
solutions are of the form x = ceλt. So similarly for system, let us suppose that one solution is of
the form eλtv where v is a constant vector.

Plug x = eλtv into the homogeneous system, we get

x′(t) = λeλtv = eλtAv.

This equality is equivalent to
λIv = Av.

We get
(λI−A)v = 0. (25)

Now let us study (25). For a constant matrix A, if (25) holds we call λ is one eigenvalue of A
and v is one eigenvector of A that is associated with λ.
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Theorem 6.7. λ is one eigenvalue of A if and only if the determinate of (λI−A) equals 0.

Example 6.3.1. Find the eigenvalues of the matrix

A =

[
2 −3
1 −2

]
.

Solution. Let us compute the determinate of (λI−A):

|λI−A| =
∣∣∣∣ λ− 2 3

−1 λ+ 2

∣∣∣∣
= (λ− 2)(λ+ 2) + 3 = λ2 − 1.

Set this to be zero, we get two eignvalues: λ = ±1.

The determinate of (λI−A) is a polynomial of λ. And if A is an n×n matrix, the polynomial
is of order n. There are exactly n eigenvalues counting multiplicity (fundamental theorem of
calculus). The polynomial is often called the characteristic polynomial of A.

Example 6.3.2. Find one eigenvector of A that is associated to the eigenvalue λ = 1.

Solution. We need to find v = (v1, v2)
T (here (v1, v2)

T is the 2× 1 vector) such that

[λI−A]v =

[
λ− 2 3
−1 λ+ 2

]
v =

[
−1 3
−1 3

] [
v1
v2

]
= 0.

Thus
v = (v1, v2)

T = (3, 1)T

is one eigenvector.

Example 6.3.3. Find the eigenvalues and eigenvectors of the matrix

A =

 1 2 −1
1 0 1
4 −4 5

 .

Solution. By direct computations, the characteristic equation is

(λ− 1)(λ− 2)(λ− 3) = 0.

For λ1 = 1, we can find an eigenvector: v1 = (−1, 1, 2)T . For λ2 = 2, we can find an eigenvector:
v1 = (−2, 1, 4)T . For λ3 = 3, we can find an eigenvector: v1 = (−1, 1, 4)T .
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Example 6.3.4. Find three linearly independent solutions to

x′ = Ax where A =

 1 2 −1
1 0 1
4 −4 5

 .

Give the general solution.

Solution. known the eigenvalues and eigenvectors, we have three solutions:

x1 = et

 −1
1
2

 , x2 = e2t

 −2
1
4

 , x3 = e3t

 −1
1
4

 .

It can be checked that they are linearly independent. So according to Theorem 6.6, the general
solutions are

x = c1x1 + c2x2 + c3x3 = c1e
t

 −1
1
2

+ c2e
2t

 −2
1
4

+ c3e
3t

 −1
1
4

 .

For the linear system, in general we need n, where n is the dimension, independent solutions
to get the general solutions.

For the equation with constant coefficients, in the case there are n distinct eigenvalues, we
are able to find n independent solutions. Sometimes we cannot find n distinct real eigenvalues,
but if we are able to find n independent eigenvectors, then the corresponding solutions are still
independent.

Example 6.3.5. Find a general solution of

x′ = Ax, where A =

 1 −2 2
−2 1 2
2 2 1

 .

Solution. The characteristic equation for A is

(λ− 3)2(λ+ 3) = 0.

For λ = 3, (3I−A)u = 0 gives 2 2 −2
2 2 −2
−2 −2 2

 u1

u2

u3

 = 0.

There are two linearly independent vectors satisfies the above equation:

u = [1, 0, 1]T , u = [0, 1, 1]T .
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We have two linearly independent solutions:

x1 = e3t

 1
0
1

 , x2 = e3t

 0
1
1

 .

For λ = −3, we get one solution

x3 = e−3t

 −1
−1
1

 .

The general solutions are
c1x1 + c2x2 + c3x3.

6.4 Nonhomogeneous Linear System
Undertermined coefficients method

Example 6.4.1. Find the general solutions to

x′ = Ax+ tg where A =

 1 −2 2
−2 1 2
2 2 1

 , g =

 1
−2
2

 .

Solution. From example (6.4.1), the general solution to the corresponding homogeneous system
x′ = Ax is

xh = c1e
3t

 1
0
1

+ c2e
3t

 0
1
1

+ c3e
−3t

 −1
−1
1

 .

Now let us find a particular solution of the form

xp = ta+ b = t

 a1
a2
a3

+

 b1
b2
b3

 .

Let us plug in xp into the nonhomogeneous equation x′ = Ax+ tg. We get

x′
p = a = Axp + tg = A(ta+ b) + tg.

We need
a = Ab, Aa = −g.

First we consider Aa = −g. This yields one solution

a = [−1, 0, 0]T .
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The first equality gives:

b1 − 2b2 + 2b3 = −1, −2b1 + b2 + 2b3 = 0, 2b1 + 2b2 + b3 = 0. (26)

From the first equality it follows that b1 = −1 + 2b2 − 2b3. And then the second one, we get

b2 = 2b1 − 2b3 = 2(−1 + 2b2 − 2b3)− 2b3 = 2 + 4b2 − 6b3.

Thus
b2 = −1

3
(−2− 6b3) =

2

3
+ 2b3.

Then
b1 = −1 + 2(

2

3
+ 2b3)− 2b3 =

1

3
+ 2b3.

Use the above two and the third equality in (26), we obtain

b3 = −2

9
, and then b1 = −1

9
, b2 =

2

9
.

We get

xp = ta+ b = t

 −1
0
0

+

 −1/9
2/9
−2/9

 .

The general solutions are

xh + xp = c1e
3t

 1
0
1

+ c2e
3t

 0
1
1

+ c3e
−3t

 −1
−1
1

+ t

 −1
0
0

+

 −1/9
2/9
−2/9

 .

Example 6.4.2. Find the solution to

x′ = Ax+ tg,x(0) = x0 where A =

 1 −2 2
−2 1 2
2 2 1

 , g =

 1
−2
2

 , x0 =

 1
1
0

 .

Solution. From the previous example, we know that the general solutions to the equations are

c1e
3t

 1
0
1

+ c2e
3t

 0
1
1

+ c3e
−3t

 −1
−1
1

+ t

 −1
0
0

+

 −1/9
2/9
−2/9


where c1, c2, c3 are constants.

Now let us use the initial data and solve for the constants. Plugging t = 0 gives

c1

 1
0
1

+ c2

 0
1
1

+ c3

 −1
−1
1

+

 −1/9
2/9
−2/9

 =

 1
1
0

 .
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We get  c1 0 −c3
0 c2 −c3
c1 c2 c3

 =

 10/9
7/9
2/9

 .

Let the first line minus the third line. We obtain

−c2 − 2c3 =
8

9
,

and using the second line we find c3 = −5
9
. Then

c1 =
5

9
, c2 =

2

9
.

Thus the solution is

5

9
e3t

 1
0
1

+
2

9
e3t

 0
1
1

− 5

9
e−3t

 −1
−1
1

+ t

 −1
0
0

+

 −1/9
2/9
−2/9

 .
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