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1 Integration

1.1 Review
First I will briefly review how derivatives is defined. Let f(x) be a function. If the limit

lim
h→0

f(x+ h)− f(x)

h

exists, then we say that f(x) is differentiable at x, and we denote the above limit as its derivative
f ′(x). If f(x) is defferentiable on R, we can view f ′(x) as a function itself. Then we say that f(x)
is one antiderivative of f ′(x).

Example 1.1.1.

(xn)′ = nxn−1, (eαx)′ = αeαx, (sinx)′ = cos x, (cosx)′ = − sinx.

Can you write down the derivative, and all the antiderivatives of 1 + x+ x2?
Next, let us review definite integration. Recall that in Math 20A, we start with Riemann sums.

Riemann Sums is used to approximately find the area enclosed by a function f(x) and the x-axis.
For example, when f(x) = 4x − x2 (as shown in the figure), we can compute the areas of the

rectangles to approximate the area of the shadow part: for some large n,

Sn =
n∑

i=1

f(xi)∆x

where ∆x = 4
n

is the length of the short sides of the rectangles, and xi = i∆x (they indicate the
position of those rectangles; we have x0 = 0, xn = 4). These xi, 0 ≤ i ≤ n are called a partition
of the interval [0, 4], Sn is called one Riemann sum of f(x) on the interval [0, 4].

The definite integral of f(x) on [0, 4] is defined to be the limit of Sn as n → ∞ (assuming that
the limit exists).

It turns out that the definite integral of one function is closely related to its antiderivatives.
Recall the fundamental theorem of calculus:

Theorem 1.1. Suppose F is an antiderivative of f on [a, b]. Then∫ b

a

f(x)dx = F (b)− F (a).
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If we are given the antiderivative first, say F = s(x), then f becomes s′(x). The theorem
becomes

Theorem 1.2. ∫ b

a

s′(x)dx = s(b)− s(a).

Example 1.1.2. ∫ b

a

xndx =
xn+1

n+ 1

∣∣∣b
a
=

bn+1

n+ 1
− an+1

n+ 1
where n ̸= −1,

∫ π

0

sinx dx = (− cosx)|π0 = 2,∫ 10

1

eαxdx =
eαx

α

∣∣∣10
1

=
e10α

α
− eα

α
.

1.2 Net Change as the Integral of a Rate of Change
Let us start with the following example.

Example 1.2.1. Water leaks from a tank at a rate of 2 + 5t L/hour, where t is the number of hours
after 9. How much water is lost between 9 and 11 pm?

Solution. Let s(t) be the quantity of water in the tank at time t. Since 2+5t represents the rate the
water is leaving, the rate of the change of the water is −(2 + 5t). Then

s(2)− s(0) =

∫ 2

0

s′(t) =

∫ 2

0

−(2 + 5t)dt = −(2t+
5

2
t2)

∣∣∣2
0
= −14.

Therefore there is a loss of 14L of water.

Remark 1.3. We sometimes call s(2) − s(0) the net change in s(t) over the interval [0, 2]. Since
s′ is the rate of the change, we know the net change equals the integral of the rate of change.

Theorem 1.4. The integral of Velocity. Suppose that there is a particle moving along forward or
backward along the real line. Let v = v(t) be a function representing velocity. Then

displacement during [t1, t2] =

∫ t2

t1

v(t)dt, (1)

distance traveled during [t1, t2] =

∫ t2

t1

|v(t)|dt. (2)

Example 1.2.2. A particle has velocity v(t) = t2 + t− 2. Compute the displacement and the total
distance traveled over [0, 4].
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Solution. Compute ∫ 4

0

v(t)dt =

∫ 4

0

t2 + t− 2 dt

= (
1

3
t3 +

1

2
t2 − 2t)

∣∣∣4
0
=

64

3
.

So the displacement is 64
3

. Next,∫ 4

0

|v(t)|dt =
∫ 4

0

|t2 + t− 2|dt.

Since
t2 + t− 2 = (t+ 2)(t− 1)

which is positive when t > 1 and otherwise when t ∈ (0, 1). So∫ 4

0

|v(t)|dt =
∫ 1

0

−(t2 + t− 2)dt−
∫ 1

4

(t2 + t− 2)dt

= −(
1

3
t3 +

1

2
t2 − 2t)

∣∣∣1
0
+ (

1

3
t3 +

1

2
t2 − 2t)

∣∣∣4
1

=
7

6
+

64

3
+

7

6
=

71

3
.

Thus the total distance traveled is 71
3

.

1.3 The Substitution Method
The method is about the change of variable. For example, if we change the variable from x to u,
then we view u = u(x) and so by chain rule,

du = u′(x)dx.

Theorem 1.5. If F ′(x) = f(x), and u is a differentiable function, then∫
f(u(x))u′(x)dx =

∫
f(u(x))du(x) = F (u(x)) + C.

Example 1.3.1. Evaluate
∫
x(x2 + 9)5dx.

Solution. Let u = x2 + 9. Then du = 2xdx and so xdx = 1
2
du. We apply substitution∫

x(x2 + 9)5dx =

∫
(x2 + 9)5xdx

=

∫
u51

2
du =

1

12
u6 + C =

1

12
(x2 + 9)6 + C.
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Example 1.3.2. Evaluate
∫
cot θdθ.

Solution. If letting u = sin θ, then u = cos θdθ. Since cot θ = cos θ
sin θ

, then∫
cotθdθ =

∫
cos θ

sin θ
dθ =

∫
du

u
= ln |u|+ C.

The answer is (ln | sin θ|+ C).

Example 1.3.3. Evaluate
∫

dx
(1+

√
x)2

.

Solution. Let u = 1 +
√
x. Then

du = d(1 +
√
x) =

1

2
√
x
dx.

Since
√
x = u− 1, we get du = 1

2(u−1)
dx and so

dx = 2(u− 1)du.

Then ∫
dx

(1 +
√
x)2

=

∫
2(u− 1)du

u2
=

∫
2

u
− 2

u2
du

= 2 ln |u|+ 2

u
+ C = 2 ln |1 +

√
x|+ 2

1 +
√
x
+ C.

The change of variables formula can be applied to definite integrals.

Theorem 1.6. Suppose F ′(x) = f(x).∫ b

a

f(u(x))u′(x)dx =

∫ u(b)

u(a)

f(u)du = F (u(b))− F (u(a)).

Example 1.3.4. Calculate the area under the graph of y = x
x2+1

over [1, 3].

Solution. The area equals
∫ 3

1
x

x2+1
dx. Let u = x2 and then

du = 2x dx, u(1) = 1, u(3) = 9.

We have ∫ 3

1

x

x2 + 1
dx =

1

2

∫ 9

1

du

u+ 1
=

1

2
ln |u+ 1|

∣∣9
1
=

1

2
ln 5.
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Example 1.3.5. A particle has velocity v(t) = sin2(t) cos(t). Compute the displacement and the
total distance traveled over [0, π].

Solution. Compute∫ π

0

v(t)dt =

∫ π

0

sin2 t cos tdt =

∫ π

0

sin2 td sin t = (
1

3
sin3 t)

∣∣∣π
0
= 0.

So the displacement is 0. Next,∫ π

0

|v(t)|dt =
∫ π

0

| sin2 t cos t|dt =
∫ π/2

0

sin2 t cos tdt−
∫ π

π/2

sin2 t cos tdt.

By symmetry: sin2 t cos t = − sin2(π − t) cos(π − t). Therefore the above

= 2

∫ π/2

0

sin2 t cos tdt = 2

∫ π/2

0

sin2 t d sin t =
2

3
sin3 t

∣∣∣π/2
0

=
2

3
.

Thus the total distance traveled is 2
3
.

2 Applications of the integral

2.1 Area between two curves
Theorem 2.1. Let y = f(x) and y = g(x) be two graphs. The signed area from the graph of g(x)
to the graph of f(x) over interval [a, b] is∫ b

a

f(x)− g(x)dx.

The area between the graphs over interval [a, b] is∫ b

a

|f(x)− g(x)|dx.

Example 2.1.1. Find the area between the graphs of f(x) = x2 − 5x− 7 and g(x) = x− 12 over
[−2, 5].

Solution. Step 1. Sketch the region. (You can skip this step when you are familiar with this type
of problems.)

Step 2. Find out the signs of f(x)− g(x). Since

f(x)− g(x) = (x2 − 5x− 7)− (x− 12) = x2 − 6x+ 5 = (x− 1)(x− 5),
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f(x)− g(x) > 0 for x ∈ (−2, 1) and < 0 for x ∈ (1, 5).
Step 3. Compute the integral. We have∫ 5

−2

|f(x)− g(x)| =
∫ 1

−2

f(x)− g(x)dx+

∫ 5

1

g(x)− f(x)dx

=

∫ 1

−2

x2 − 6x+ 5dx−
∫ 5

1

x2 − 6x+ 5dx

= (
1

3
x3 − 3x2 + 5x)

∣∣∣1
−2

− (
1

3
x3 − 3x2 + 5x)

∣∣∣5
1

= (
7

3
− (−74)

3
)− (

−7

3
− 25

3
) =

113

3
.

Example 2.1.2. Find the area of the region bounded by the graphs of y = 8
x2 (with positive x),

y = 8x and y = x.

Solution. Let us find the intersection of graphs. Suppose f1 = 8
x2 , f2 = 8x, f3 = x. The

intersection of f1, f2 is given by

f1 = f2 =⇒ x = 1.

The intersection of f1, f3 is
f1 = f3 =⇒ x = 2.

Finally
f2 = f3 =⇒ x = 0.

When x ∈ (0, 1), f1 ≥ f2 ≥ f3 and when x ∈ (1, 2), f2 ≥ f1 ≥ f3. Therefore the area equals∫ 1

0

f2 − f3dx+

∫ 2

1

f1 − f3

=

∫ 1

0

8x− xdx+

∫ 2

1

8

x2
− xdx

=

∫ 1

0

7xdx+

∫ 2

1

8

x2
− xdx

= (
7

2
x2)

∣∣∣1
0
+ (−8

x
− x2

2
)
∣∣∣2
1

=
7

2
+

5

2
= 6.

We can also do integration along y-axis. Then we need to rewrite the curves as functions of y.
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Example 2.1.3. Find the area of the region (in {x > 0, y > 0}) that is bounded by y = x2,
y = (x− 2)2 and x = 0.

Solution. Let us rewrite the curves as functions of y in the region y ≤ 1 as follows

f1(y) =
√
y, f2(y) = 2−√

y.

Set f1(y) = 0, f2(y) = 0 respectively and then we get y = 0, 4. We find y ∈ (0, 4).
The intersection of the two curves is given by

√
y = 2−√

y =⇒ y = 1.

For y ∈ (0, 1), the region is given by those point in between the graphs of x = 0, x = f1. For
y ∈ (1, 4), the region is given by x = 0, x = f2. Thus the area equals∫ 1

0

f1(y)− 0 dy +

∫ 4

1

f2(y)− 0 dy

=

∫ 1

0

√
y dy +

∫ 4

1

2−√
y dy

= (
2

3
y3/2)

∣∣∣1
0
+ (2y − 2

3
y3/2)

∣∣∣4
1

=
2

3
+ (8− 16

3
− 2 +

2

3
)

= 2.

2.2 Volume, Density
Let us compute the volume of a solid body in R3. Suppose that a solid body extends from height
y = a to y = b. Let us cut the solid body with a hyperplane y = y0, then we get a horizontal cross
section and we denote the area of the section as A(y). Then we have the following formula:

Theorem 2.2.

The volume of the solid body (given above) =

∫ b

a

A(y)dy.

Example 2.2.1. Volume of a Pyramid. Calculate the volume V of a pyramid of height 12m whise
base is a square of side 4m.

Solution. Step 1. Find A(y). Consider a horizontal cross section at height y. It is a square
denoted by Sy and suppose the length of its side is s. Apply the law of similar triangles to the
triangle given by one side of Sy and the top point. See Figure 3 on page 367 of the textbook. We
find

the proportion of the sides =
s

4
=

12− y

y
.
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This shows that s = 1
3
(12− y) and therefore

A(y) = the area of Sy = s2 =
1

9
(12− y)2.

Step 2. Compute V.

V =

∫ 12

0

A(y)dy =

∫ 12

0

1

9
(12− y)dy = − 1

27
(12− y)3

∣∣∣12
0

= 64.

Remark 2.3. Suppose a pyramid of base area A and height h, the volume formula is

V =
1

3
Ah.

Can you justify this formula?

Example 2.2.2. Volume of a Sphere. Compute the volume of a sphere of radius R.

Solution. Place the sphere centered at the origin. Let A(y) denotes the area of the horizontal cross
section. See Figure 5 on page 367. Then y is from −R to R. For each such y, the section is a circle
with radius r such that

r2 + y2 = R2 and so r =
√

R2 − y2.

Then
A(y) = πr2 = π(R2 − y2).

Therefore the volume of the sphere∫ R

−R

π(R2 − y2)dy = π(R2y − y3

3
)
∣∣∣R
−R

=
4

3
πR3.

Example 2.2.3. The population of one city and its surrounding suburbs has radial density function
ρ(r) = 15(1+ r2)−1/2, where r is the distance from the city center in kilometers and ρ has units of
thousands per square kilometer. How many people live in the ring between 10 and 30 km from the
city center?

Solution. Knowing the density of population, say ρ, then the population equals the integration of
the density. Suppose A (in dimension 2) is the region and the the population equals∫

A

ρdxdy.

We have the following formula where (r, θ) is the polar coordinates in dimension 2:

dxdy = rdrdθ.
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So the population is∫ 2π

0

(

∫ 30

10

15(1 + r2)−1/2 rdr)dθ = 30π

∫ 30

10

rdr

(1 + r2)1/2

= 15π

∫ 30

10

dr2

(1 + r2)1/2

= 15π

∫ 900

100

du

(1 + u)1/2
(u = r2)

= 30π(1 + u)1/2
∣∣∣900
100

= 30π(
√
901−

√
101).

2.3 Volumes of Revolution
A solid of revolution is a solid obtained by rotating a 2-dimensional region about an axis in 3-
dimensional space.

Theorem 2.4. If f ≥ 0 on [a, b], then the solid obtained by rotating the region under the graph
about the x-axis has volume

V = π

∫ b

a

f(x)2dx.

Theorem 2.5. If f ≥ g ≥ 0 on [a, b], then the solid obtained by rotating the region between the
graphs f, g about the x-axis has volume

V = π

∫ b

a

f(x)2 − g(x)2dx.

Example 2.3.1. (Region between two curves) Find the volume V obtained by revolving the region
between y = x2 + 4 and y = 2 about the x-axis for 1 ≤ x ≤ 3.

Solution. The volume of the solid given by rotating the region under y = x2 + 4 is

V1 = π

∫ 3

1

(x2 + 4)2dx.

The volume of the solid given by rotating the region under y = 2 is

V2 = π

∫ 3

1

22dx.

The volume wanted is the difference of the above two volumes:

V = V1 − V2 = π

∫ 3

1

(x2 + 4)2 − 22dx = π

∫ 3

1

(x4 + 8x2 + 12)dx =
2126

15
π.
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In the next example, we calculate a volume of revolution about a vertical line that is parallel to
the y-axis.

Example 2.3.2. Find the volume of the solid obtained by rotating the region under the graph of
f(x) = 9− x2 for 0 ≤ x ≤ 3 about the vertical axis x = −2.

Solution. First let us plot the graph of y = f(x). It can be seen from the graph that the solid
obtained can be viewed as the difference of two sold bodies coming from rotating two graphs
about x = −2. Let us write the inner and outer radii as R1 and R2 (note that the center is at
x = −2). Since y = f(x) = 9− x2, we have x =

√
9− y. Because the center is at x = −2, then

R1 =
√

9− y + 2.

Since the region accounts for 0 ≤ x ≤ 3,

R2 = 2.

When 0 ≤ x ≤ 3, from the picture of the graphs, y is from 0 to 9. So the volume

V = π

∫ 9

0

R2
1 −R2

2dy = π

∫ 9

0

(9− y + 4
√

9− y)dy

= π(9y − 1

2
y2 − 8

3
(9− y)3/2)

∣∣9
0
=

225

2
π.

3 Techniques of integration

3.1 Integration by parts
In this section, we give a formula that often allows us to convert an integral to another.

Theorem 3.1. Let u, v be (differentiable) functions of x.∫
udv = uv −

∫
vdu.

Proof. Notice by the product rule

d

dx
(uv) = u

dv

dx
+ v

du

dx
.

So after integrating both sides,

uv =

∫
u
dv

dx
dx+

∫
v
du

dx
dx =

∫
udv +

∫
vdu.

The formula follows by moving
∫
vdu to the left-hand side.
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Example 3.1.1. Evaluate
∫
lnxdx.

Solution. View x as v and lnx as u. Then∫
lnxdx = (ln x)x−

∫
xd lnx

= x lnx−
∫

x
1

x
dx

= x lnx− x+ C.

Sometimes we need to do integration by parts more than once.

Example 3.1.2. Evaluate
∫
x2 sinx dx.

Solution. Since sinx dx = d(− cosx), view x2 as u and − cosx as v. Then∫
x2 sinx dx =

∫
x2d(− cosx)

= −x2 cosx−
∫
(− cosx)dx2

= −x2 cosx+

∫
2x cosx dx.

Let us do integration by parts once again for
∫
2x cosx dx.∫

2x cosx dx =

∫
2x d sinx

= 2x sinx−
∫

sinxd(2x)

= 2x sinx− 2

∫
sinxdx

= 2x sinx+ 2 cos x+ C.

In all we have ∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cos x+ C.

The definite integral version of the integration by parts:

Theorem 3.2. ∫ b

a

u dv = uv
∣∣b
a
−
∫ b

a

v du.
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Example 3.1.3. Evaluate
∫ π

0
ex cosx dx.

Solution. ∫ π

0

ex cosx dx =

∫ π

0

ex d sinx

= ex sinx
∣∣∣π
0
−

∫ π

0

sinx dex

= −
∫ π

0

ex sinx dx.

If we do integration by parts once again, we get the above

=

∫ π

0

exd cosx

= ex cosx
∣∣∣π
0
−

∫ π

0

cosx dex

= −eπ − 1−
∫ π

0

ex sinx dx.

In all we obtained ∫ π

0

ex sinx dx = −eπ − 1−
∫ π

0

ex sinx dx,

which implies ∫ π

0

ex sinx dx = −1

2
eπ − 1

2
.

3.2 Polar Coordinates
The rectangular coordinates describe the position of one point on the x− y plane. For example if
a point P has coordinate (x1, y1), it means that x1 is the projection of P onto the x-axis and y1 is
the projection of P onto the y-axis.

There is another way to describe the position of P . In polar coordinates, we label it by coordi-
nates (r, θ), meaning that the distance from P to the origin is r(= OP) and the angle between OP
and the x-axis is θ.

Theorem 3.3. Suppose a point has (x, y) rectangular coordinate and (r, θ) polar coordinate. Then
polar to rectangular coordinates:

x = r cos θ, y = r sin θ,

and rectangular to polar:
r2 = x2 + y2, tan θ =

y

x
.
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Here I avoided writing θ = arctan y
x
. Because by convention, the range of arctan is only

(−π
2
, π
2
], while the angle we want to represent has a larger range. We also remark that (r, θ) and

(r, θ + 2πk) with k ∈ Z label the same point.
We commonly choose r ≥ 0 and θ ∈ [0, 2π). When r > 0,

θ = arctan
y

x
if the point lies in the first quadrant,

θ = arctan
y

x
+ π if the point lies in the second or third quadrant,

θ = arctan
y

x
+ 2π if the point lies in the fourth quadrant,

θ =
π

2
or

3π

2
if (x, y) = (0, y).

Example 3.2.1. Find the rectangular coordinate of a point Q which has polar coordinate (3, 5π
6
).

Find the polar coordinate of a point W which has a rectangular coordinate (3, 2).

Solution. Since the polar coordinate of Q is (r, θ) = (3, 5π
6
), so the rectangular coordinate is

(x, y) = (r cos θ, r sin θ) = (−3
√
3

2
,
3

2
).

As for W , since (x, y) = (3, 2) lies in the first quadrant, we have

r =
√
x2 + y2 =

√
13 ≈ 3.6,

θ = arctan(2/3) ≈ 0.588.

So the polar coordinate for W is (
√
13, arctan(2/3)) ≈ (3.6, 0.588).

By convention, we allow negative radial coordinates (though not common!). The definition is

(−r, θ) is the reflection of (r, θ) through the origin.

Hence (−r, θ) and (r, θ + π) represent the same point.

Example 3.2.2. Find two polar representations of P = (−1, 1), one with r > 0 and one with
r < 0.

Solution. Let (r, θ) be one polar coordinate of P . Then

r2 = 2 and tan θ =
y

x
= −1.

First consider r > 0, then r =
√
2. Since P is in the second quadrant, the correct angle is

θ = arctan(−1) + π = −π

4
+ π =

3π

4
.

If we wish to use the negative radial coordinate r = −
√
2, then the angle becomes 3π

4
+ π = 7π

4
.

Thus
P = (

√
2,

3π

4
) or (−

√
2,

7π

4
).
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Example 3.2.3. Convert the following to an equation in polar coordinates of the form r = f(θ):

1. xy = 1;

2. the line whose point closest to the origin is P0 = (d, α) in polar coordinate.

Solution. For 1, since x = r cos θ, y = r sin θ, we have

r2 cos θ sin θ = 1.

Therefore

r =

√
1

cos θ sin θ
.

We also need
cos θ sin θ =

1

2
sin 2θ

to be positive. Hence

θ ∈ (0,
π

2
) ∪ (π,

3π

2
).

Now consider 2. Let P = (r, θ) be any point on the line. Then ∆OPP0 is a right triangle.
Therefore

d

r
= cos(θ − α)

or
r =

d

cos(θ − α)
= d sec(θ − α).

From the picture, θ belongs to (−π
2
+ α, π

2
+ α).

Example 3.2.4. Convert to rectangular coordinates and identify the curve with polar equation
r = 2a cos θ where a is a positive constant.

Solution. Use the relation

r =
√

x2 + y2 and x = r cos θ.

We get √
x2 + y2 = 2ax/r

which gives
x2 + y2 = 2ax.

It can be rewritten into
(x− a)2 + y2 = a2.

This is the equation of the circle of radius a and center (a, 0).
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3.3 Area in Polar Coordinates
Theorem 3.4. Let f be a continuous function. The area bounded by a curve in polar form r = f(θ)
and the rays θ = α and θ = β (with α < β) is equal to

1

2

∫ β

α

r2dθ =
1

2

∫ β

α

f(θ)2dθ.

Example 3.3.1. Sketch r = sin 3θ and compute the area of one “petal".

Solution. To sketch the curve, we first graph r = sin 3θ in r versus θ rectangular coordinates
(see figure 5 on page 647 of the textbook). By periodicity, we only need to look at θ ∈ [0, 2π).
Since sin 3θ is periodic with periodicity 2π

3
, we only need to look at θ ∈ [0, 2π

3
). Also since

r(θ) = −r(θ + π), we only need to look at θ ∈ [0, π
3
).

We know that r varies from 0 to 1 and back to 0 as θ increases from 0 to π
3
. This gives one

petal. When θ increase from π
3

to 2π
3

, r ≤ 0. We shift the angle by π if we use positive radius. This
gives that r varies from 0 to 1 and back to 0 as θ increases from 4π

3
to 5π

3
. Lastly when θ increases

from 2π
3

to π, r varies from 0 to 1 and back to 0.
The area is

1

2

∫ π/3

0

(sin 3θ)2dθ =
1

2

∫ π/3

0

(
1− cos 6θ

2

)
dθ =

(
1

4
θ − 1

24
sin 6θ

) ∣∣π/3
0

=
π

12
.

Example 3.3.2. Find the area of the region inside the circle r = 2 cos θ but outside the circle
r = 1.

Solution. The two circles intersect at the points where 2 cos θ = 1, which gives cos θ = 1
2

and so
θ = ±π

3
.

From the picture (see figure 7 on page 648 of the textbook) that the target region can be viewed
as the difference of two “sectors".

the area =
1

2

∫ π/3

−π/3

(2 cos θ)2dθ − 1

2

∫ π/3

−π/3

(1)2dθ

=
1

2

∫ π/3

−π/3

4(cos θ)2 − 1 dθ

=
1

2

∫ π/3

−π/3

2 cos(2θ) + 1 dθ

=
1

2
(sin θ + θ)

∣∣π/3
−π/3

=

√
3

2
+

π

3
.
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Review for Midterm 1
Velocity and Displacement.

Example 3.3.3. Find the distance travelled and displacement from t = 1 to 4 for an object with
velocity 8t− t2.

Integration method.

Example 3.3.4. ∫
cosx cos(sinx)dx,

∫
x5xdx,

∫ 2

0

dx√
2x+ 5

.

Area and Volume.

Example 3.3.5. Sketch the region enclosed by the curves and compute its area as an integral.

y = x
√
x− 2, y = −x

√
x− 2, x = 4.

Solution. Note by the given expression, x ≥ 2. So x is from 2 to 4.

area =

∫ 4

2

x
√
x− 2− (−x

√
x− 2)dx

= 2

∫ 4

2

x
√
x− 2 dx

Set t :=
√
x− 2 and then x = t2 + 2, dx = 2tdt. The integration

= 2

∫ √
2

0

(t2 + 2)t× 2t dt

= 4

∫ √
2

0

t4 + 2t2 dt

= 4

(
t5

5
+

2t3

3

) ∣∣√2

0

=
128

15

√
2.

Example 3.3.6. Find the volume V of the solid whose base is the circle x2 + y2 = 16 and whose
cross sections perpendicular to the x-axis are triangles whose height and base are equal.

Solution. For each hyperplane location x = a, it intersects with the solid and the cross section is
a triangle with bottom side of length 2y = 2

√
16− a2. The height of the triangle is the same with

the bottom side.
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Therefore, the volume of the solid is∫ 4

−4

1

2
(2y)2dx =

∫ 4

−4

1

2
2(16− x2)dx

= 2

∫ 4

−4

(16− x2)dx

= 512/3.

Example 3.3.7. A plane inclined at an angle of 45 degree passes through a diameter of the base
of a cylinder of radius r. Find the volume of the region with the cylinder and below the plane (see
Figure 23 on page 374 of the textbook).

Solution. Let h be the height. When h = 0, the cross section is a half disc. When h > 0, the cross
section is the smaller part of the intersection of a disc and a straight line which is h away from its
center. The area of the cross section is the difference of sector of angle 2 arccos h

r
and a triangle:

πr2
2 arccos(h/r)

2π
− 1

2
h(2

√
r2 − h2).

Therefore the volume ∫ r

0

r2arccos(h/r)− h
√
r2 − h2 dh

= r3
∫ r

0

arccos(h/r)d(h/r)− 1

2

∫ r

0

√
r2 − h2 dh2

= r3
∫ 1

0

arccosxdx− 1

2

∫ r2

0

√
r2 − y dy

= r3(x arccosx−
√
1− x2)

∣∣1
0
+

1

3
(r2 − y)3/2

∣∣∣r2
0

= r3 − 1

3
r3

=
2

3
r3.

Example 3.3.8. The solid S (see Figure 24 on page 375 of the textbook) is the intersection of two
cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross section of each cylinder at distance y from the central axis is a rectan-
gular strip. Find the strip’s width.

(b) Find the area of the horizontal cross section of S at distance y.
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(c) Find the volume of S as a function of r.

Solution. The strip’s side is given by the intersection of a disc of radius r (the base of the cylinder)
and a straight line which is y away from the disc’s center. Thus the width is 2

√
r2 − y2.

The horizontal cross section of a cylinder (placed in a way that its bottom is perpendicular to
the horizontal plane) is a rectangle. And therefore the horizontal cross section of S is a square of
side length 2

√
r2 − y2. Thus the area is 4(r2 − y2).

With the above information, the volume is∫ r

−r

4(r2 − y2)dy = 8r3 − 4

3
y3
∣∣r
−r

=
16

3
r3.

Example 3.3.9. Find the volume of the solid obtained by rotating the region enclosed by the graphs
about the given axis.

y = 2
√
x, y = x, about x = −20.

Solution. Let us find the intersection of the two curves by setting 2
√
x = x. We get the two curves

intersect at x = 0 and x = 4. Rotating the region enclosed by y = 2
√
x and y = x about x = −20

produces a solid whose cross sections are washers with outer radius R = y − (−20) = y + 20 and
inner radius r = 1

4
y2 − (−20) = 1

4
y2 + 20. The volume of the solid of revolution is

V = π

∫ 4

0

(
(y + 20)2 − (

1

4
y2 + 20)2

)
dy

= π

∫ 4

0

(
0 + 40y − 9y2 − 1

16
y4
)
dy

= π

(
20y2 − 3y3− 1

80
y5
) ∣∣4

0

=
576

5
π.

Example 3.3.10. The torus (see Figure 15 on page 384 of the textbook) is obtained by rotating the
circle (x− a)2 + y2 = b2 around y-axis (assume a > b > 0). Show that it has volume 2π2ab2.

Solution. In order to find out the outer and inner radius, we find the distance from the circle to the
y-axis. For each y, the inner radius equals a − 1

2
s where s is the length of the intersection of the

circle and a straight line y away from its center. While the outer radius is a+ 1
2
s. Thus the volume

V = π

∫ b

−b

(a+
1

2
s)2 − (a− 1

2
s)2dy = 2aπ

∫ b

−b

sdy.

Notice
∫ b

−b
sdy is exactly the area of a circle of radius b. Therefore

V = 2aπ × πb2 = 2π2ab2.
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Alternatively, we can compute s = 2
√
b2 − y2 and do the integration by considering the sub-

stitution y = b sin θ.

Example 3.3.11 (exercise 20 on textbook page 650). Find the area between r = 2 + sin 2θ and
r = sin 2θ.

Solution. [Sketch] Think about why the two curves attach at two points in the picture?
θ ∈ (0, π/2):

S1 =
1

2

∫ π/2

0

(2 + sin 2θ)2dθ − 1

2

∫ π/2

0

(sin 2θ)2dθ.

θ ∈ (π/2, π):

S2 =
1

2

∫ π

π/2

(2 + sin 2θ)2dθ − 1

2

∫ π

π/2

(sin 2(θ + π))2dθ.

The area = 2S1 + 2S2.

Example 3.3.12. Set up, but do not evaluate, the area of the region between the inner and outer
loop given by r = 2 cos θ − 1. See Figure 19 on textbook page 650.

Solution. What is the graph of r(θ)? Which parts translates to the which parts of the graph? What
happens when r < 0? This answer is:∫ π

π/3

(2 cos θ − 1)2dθ −
∫ π/3

0

(2 cos θ − 1)2dθ.

Think about why?

4 Supplement

4.1 Complex Numbers
Definition 4.1. A complex number is a number of the form a+ bi, where a and b are real numbers
and i2 = −1. Here a is called the real part of the complex number and b is called the imaginary
part.

Remark 4.2. A real number is also a complex number (with 0 imaginary part).

We have the following computational laws: if α = a+bi and β = c+di are complex numbers,
then

α + β := (a+ c) + (b+ d)i,

α− β := (a− c) + (b− d)i,

αβ := (ac− bd) + (ad+ bc)i.

The last law can be deduced from the following computation by using i2 = −1.

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = ac− bd+ (ad+ bc)i.
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Example 4.1.1. Let α, β be as the above. What is the real part and the imaginary part of α
β

?

Solution. It follows from the direct computation

a+ bi

c+ di
=

(
a+ bi

c+ di

)(
c− di

c− di

)
=

ac− adi+ bci− bdi2

c2 − d2i2

=

(
ac+ bd

c2 + d2

)
+

(
−ad+ bc

c2 + d2

)
i.

Thus the real part is ac+bd
c2+d2

and the imaginary part is −ad+bc
c2+d2

.

Definition 4.3. Let α = a+ bi be a complex number.

(a) The complex conjugate of α is the complex number ᾱ := a− bi.

(b) The magnitude of α, written |α|, is given by |α| :=
√
αᾱ =

√
a2 + b2.

(c) |α| is also called the modulus, length or absolute value of α.

Theorem 4.4. Let α and β be complex variables. Then,

(α± β) = ᾱ± β̄, (αβ) = ᾱβ̄,

(
α

β

)
=

ᾱ

β̄
.

A complex variable z = x + iy can be represented geometrically by a point (x, y) in the 2-
dimensional plane. (Think about the difference between a complex number and a point in R2?) It
is known that any point in the plane can be represented in polar coordinates (r, θ). Thus, we can
use polar coordinates to rewrite a complex number as well:

z = r[cos(θ) + i sin(θ)].

This is called the polar form of z. Note that |z| = r. The angle θ is called the argument of z,
written θ = arg(z). It is important to realize that θ = arg(z) is not uniquely determined.

Theorem 4.5. Suppose for j = 1, 2,

zj = rj[cos(θj) + i sin(θj)].

Then
z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Example 4.1.2. Let α = 1 + i. By what angle will multiplication by β = −
√
3
2

+ 1
2
i rotate α?

Compute αβ.
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Solution. Since

β = −
√
3

2
+

1

2
i = cos(

5π

6
) + i sin(

5π

6
),

thus multiplication by β produces a rotation by 5π
6

. Also since

α =
√
2[cos(

π

4
) + i sin(

π

4
)],

we obtain

αβ = |α||β|[cos(π
4
+

5π

6
) + i sin(

π

4
+

5π

6
)] =

√
2[cos(

13π

12
) + i sin(

13π

12
)].

Theorem 4.6 (de Moivre’s Theorem). Let z = r[cos(θ) + i sin(θ)] be a complex number in polar
form and let n be an integer. Then,

zn = rn[cos(nθ) + i sin(nθ)].

Example 4.1.3. Compute (1 +
√
3i)8 and write the result in the standard (a+ bi) form.

Solution. Notice

1 +
√
3i = 2(

1

2
+

√
3

2
i) = 2[cos(

π

3
) + i sin(

π

3
)].

Therefore

(1 +
√
3i)8 = 28[cos(

8π

3
) + i sin(

8π

3
)]

= 256(−1

2
+

√
3

2
i)

= −128 + 128
√
3i.

Example 4.1.4. Find all the sixth roots of −64.

Solution. Since
−64 = 26[cos(π + 2kπ) + i sin(π + 2kπ)],

the 6th roots are given by

wk = 2

[
cos

(
π + 2πk

6

)
+ i sin

(
π + 2πk

6

)]
, k = 0, 1, 2, 3, 4, 5.

Then are

w0 =
√
3 + i, w1 = 2i, w2 = −

√
3 + i, w3 = −

√
3− i, w4 = −2i, w5 =

√
3− i.

The roots appear in pairs. For example, w1 and w6 are conjugate to each other, and w2 and w5 are
conjugate to each other. Think about why?

Why there are six sixth roots? In general, for any complex number, there n different n’th roots.
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4.2 Complex Exponential
Definition 4.7. Complex Exponential.

ea+bi = ea[cos b+ i sin b].

Why this definition? We are going to provide one answer after learning Taylor series. In
particular, we have the well-known Euler’s formula:

eiθ = cos θ + i sin θ, eiπ = 1.

Theorem 4.8. Let z1, z2 be complex numbers. Then

ez1ez2 = ez1+z2 .

Example 4.2.1. Show

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

Proof. Notice
eix = cos x+ i sinx, e−ix = cos x− i sinx.

Adding and dividing by 2 gives us cos(x) whereas subtracting and dividing by 2i gives us sin(x).

This expression can be used to define cos z, sin z for complex z. Can you do it?

Example 4.2.2. Use Theorem 4.8 to show

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

Proof. Consider eiα, eiβ . Then
ei(α+β) = eiαeiβ,

which implies

cos(α + β) + i sin(α + β) = (cos(α) + i sin(α))× (cos(β) + i sin(β)).

The RHS of the above equals

cosα cos β − sinα sin β + i(sinα cos β + cosα sin β).

To have the RHS = the LHS, we need the corresponding real parts equal and imaginary parts equal.
Thus

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

Remark 4.9. The proof of example 4.2.2 also implies

cos(α + β) = cosα cos β − sinα sin β.

Set α = β, and then we get

sin 2α = 2 sinα cosα,

cos 2α = (cosα)2 − (sinα)2 = 2 cos2 α− 1.
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4.3 Trig integration
Complex exponential method.

We know that for an exponential function eax we have∫
eaxdx =

1

a
eax + C.

Actually the same formula holds if we replace a by a complex number z (and in this case the
constant C can be either a real number or a complex number depending on what anti-derivative
you want to find).

Example 4.3.1. Let us integrate
8 cos(3x) sin(x).

Solution. We have

8 cos(3x) sin(x) = 8

(
e3ix + e−3ix

2

)(
eix − e−ix

2i

)
=

2

i

(
e4ix + e−2ix − e2ix − e−4ix

)
.

After integration,∫
8 cos(3x) sin(x)dx =

∫
2

i

(
e4ix + e−2ix − e2ix − e−4ix

)
dx

=
2

i

(
e4ix

4i
− e−2ix

2i
− e2ix

2i
+

e−4ix

4i

)
+ C

= −
(
e4ix

2
+

e−4ix

2

)
+ e−2ix + e2ix + C

= − cos(4x) + 2 cos(2x) + C.

For a complex number z = x + yi, we write the real part of it as Re(z), and so Re(z) = x. It
can be easily checked that z + z̄ = 2Re(z).

Example 4.3.2. Let us integrate e2x sin(x).

Solution. ∫
e2x sin(x)dx =

1

2i

∫
e2x(eix − e−ix)dx

=
1

2i

∫
e(2+i)x − e(2−i)x)dx

=
1

2i

(
e(2+i)x

2 + i
− e(2−i)x)

2− i

)
+ C

= −e2x

2

(
eix

1− 2i
+

e−ix

1 + 2i

)
+ C.
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Since the two expressions are conjugate to each other, the above equals,

= −e2x Re
(

eix

1− 2i

)
+ C

= −e2x Re
(
(1 + 2i)eix

5

)
+ C

= −e2x

5
(cos(x)− 2 sin(x)) + C.

Substitution.
Substitution can also help solving an integration problem. The following substritution are

frequently used:

u = sin x, u = cos x, u = tan x u = tan
x

2
, etc.

Example 4.3.3. Evaluate ∫
tan3 x sec5 x dx.

Solution. Notice

tan3 x sec5 x =
sin3 x

cos8 x
=

1− cos2 x

cos8 x
sinx.

Let u = cos x and then du = − sinxdx. Therefore∫
tan3 x sec5 xdx =

∫
1− cos2 x

cos8 x
sinx dx

= −
∫

1− u2

u8
du

= −
∫

u−8 − u−6du

=
u−7

7
− u−5

5
+ C

=
sec7 x

7
− sec5 x

6
+ C.

Example 4.3.4. Evaluate ∫
tan2 x sec4 x dx.
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Solution. Notice

tan2 x sec4 x =
sin2 x

cos6 x
and doing substitution for as in the previous example won’t work. Instead, let us consider

u = tan x and then du =
1

cos2 x
dx.

Hence ∫
tan2 x sec4 x dx =

∫
sin2 x

cos4 x
d tanx

=

∫
sin2 x(sin2 x+ cos2 x)

cos4 x
d tanx

=

∫
u4 + u2 du

=
tan5 x

5
+

tan3 x

3
+ C.

Example 4.3.5. Evaluate

(1).

∫
tan3 x dx, (2).

∫
tan4 x dx.

Solution. For (1). consider u = sin x. Then∫
tan3 x dx =

∫
sin3 x

cos3 x

1

cosx
d sinx

=

∫
sin3 x

(1− sin2 x)2
d sinx

=

∫
u3

(1− u2)2
du.

Then we apply the Partial fraction method (in Section 5.4) to get

u3

(1− u2)2
=

u3

(u− 1)2(u+ 1)2
=

1

2 (u+ 1)
− 1

4 (u+ 1)2
+

1

2 (u− 1)
+

1

4 (u− 1)2
.

After integration, we get

1

2
ln |(u− 1)(u+ 1)|+ 1

4

1

u+ 1
− 1

4

1

u− 1
+ C

=
1

2
ln |1− u2|+ 1

2

1

1− u2

= − ln | secx|+ 1

2
sec2 x+ C.
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As for (2), we let v = tan x. Then∫
tan4 x dx =

∫
sin4 x

cos2 x
d tanx

=

∫
sin4 x

cos2 x(sin2 x+ cos2 x)
d tanx

=

∫
v4

v2 + 1
dv =

∫
v2 − 1 +

1

v2 + 1
dv

=
v3

3
− v + arctan v + C.

The integral becomes:
1

3
tan3 (x) + x− tan (x) + C.

Remark 4.10. We can also apply the following formula to Example 4.3.5:∫
tann xdx =

tann−1 x

n− 1
−

∫
tann−2 xdx.

Please do it as an exercise.

Example 4.3.6 (Integral of Secant). Derive the formula∫
secx dx = ln | secx+ tanx|+ C.

Solution. Let u = tan x
2
. Then

du =
1

2 cos2(x/2)
dx =

1

2
(1 + u2)dx,

secx =
1

cos2(x/2)− sin2(x/2)
=

1 + u2

1− u2
.

The integral becomes ∫
secx dx =

∫
1 + u2

1− u2

2

1 + u2
du

=

∫
1

1− u
+

1

1 + u
du

= ln

∣∣∣∣1 + u

1− u

∣∣∣∣+ C.

After transferring from tan(x/2) to u, we can show the formula. I will leave it to you. :)
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4.4 Partial fractions
Theorem 4.11. [Fundamental Theorem of algebra] A polynomial P of degree n is a function of
the form

P (x) = a0 + a1x+ a2x
2 + ...+ anxn

where ai are complex numbers and an ̸= 0. Then P (x) has n complex roots (counting multiplicity)
and we can factor P (x) as

P (x) = an(x− z1)
n1(x− z2)

n2 ...(x− zk)
nk ,

where zk are k distinct complex numbers and
∑

i ni = n.

Now we consider a polynomial differentiate another polynomial and we study partial fractions.

Theorem 4.12. Suppose that the n numbers α1, ..., αn are pairwise distinct and that P (x) is a
polynomial with degree less than n. Then, there are constants C1, ..., Cn such that

P (x)

(x− α1)...(x− αn)
=

C1

x− α1

+ ...+
Cn

x− αn

. (3)

To determine the constants C1, ..., Cn, we carry out the following steps:

• Multiply both sides of (3) by x − αj and then set x = αj . The left side will evaluate to a
number Zj .

• The right side evaluates to Cj , since the other terms have a factor of x− αj which is 0 when
x = αj . We conclude that Zj = Cj .

Now for some illustrations, we consider the following example.

Example 4.4.1. Let us expand f(x) = x2+2
(x−1)(x+2)(x+3)

by partial fractions.

Solution. By the theorem,

f(x) =
x2 + 2

(x− 1)(x+ 2)(x+ 3)
=

C1

x− 1
+

C2

x+ 2
+

C3

x+ 3
.

Multiply by x− 1 to eliminate the pole at x = 1 and get

x2 + 2

(x+ 2)(x+ 3)
= C1 +

C2(x− 1)

x+ 2
+

C3(x− 1)

x+ 3
.

Set x = 1 and obtain
C1 =

1 + 2

(1 + 2)(1 + 3)
=

1

4
.

Similarly,

C2 =
x2 + 2

(x− 1)(x+ 3)
|x=−2 = −2.
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and

C3 =
x2 + 2

(x− 1)(x+ 2)
|x=−3 =

11

4
.

We conclude that
f(x) =

1

4(x− 1)
− 2

(x+ 2)
+

11

4(x+ 3)
.

A cultural aside is that the numbers C1, C2, C3 are often called the residues of the poles at
1,−2,−3, many of you will see them later in your career under that name. If we wish to find the
antiderivatives of f from this, we immediately get∫

f(x)dx =
1

4
ln |x− 1|+ 2 ln |x+ 2|+ 11

4
ln |x+ 3|+ C.

Repeated roots.
When we have repeated root, each factor (x − a)n contributes the following sum of terms to

the partial fraction decomposition

A1

(x− a)
+

A2

(x− a)2
+ ...+

An

(x− a)n
.

Let us apply the method to

f(x) =
1

(x− 1)2(x− 3)
.

Solution. The partial fraction expansion is of the form

f(x) =
A

(x− 1)2
+

B

(x− 1)
+

C

x− 3
.

We can find C quickly from

C = (x− 3)f(x)|x=3 =
1

(3− 1)2
=

1

4

and A from
A = (x− 1)2f(x)|x=1 =

1

1− 3
= −1

2
.

We get

f(x) = − 1

2(x− 1)2
+

B

(x− 1)
+

1

4(x− 3)
.

Let us plug in a convenient value of x, say x = 0 and obtain

f(0) =
1

(−1)2(−3)
= −1

2
−B − (

1

3
)(
1

4
)
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We get B = −1
4
, and then

f(x) = − 1

2(x− 1)2
− 1

4(x− 1)
+

1

4(x− 3)
.

Quadratic factor.
Irreducible quadratic factors (x2 + ax + b)N contributes the following sum of terms to the

partial fraction decomposition

A1x+B1

(x2 + ax+ b)
+

A2x+B2

(x2 + ax+ b)2
+ ...+

ANx+BN

(x2 + ax+ b)N
.

Example 4.4.2. Evaluate ∫
4− x

x(x2 + 2)2
dx.

Solution. The partial fraction decomposition has the form

4− x

x(x2 + 2)2
=

A

x
+

Bx+ C

x2 + 2
+

Dx+ E

(x2 + 2)2
.

Multiplying both side by x and then set x = 0, we get A = 1.
Then multiplying both side by x(x2 + 2)2, we get

4− x = (x2 + 2)2 + (Bx+ C)x(x2 + 2) + (Dx+ E)x

= (1 +B)x4 + Cx3 + (4 + 2B +D)x2 + (2C + E)x+ 4.

Now equate the coefficients on the two sides gives

B = −1, C = 0, D = −2, E = −1.

Thus ∫
4− x

x(x2 + 2)2
dx =

∫
dx

x
−

∫
xdx

x2 + 2
−

∫
2x+ 1

(x2 + 2)2
dx

= ln |x| − 1

2
ln(x2 + 2)−

∫
2x+ 1

(x2 + 2)2
dx.

Finally using the result from example 4.5.2, we have∫
4− x

x(x2 + 2)2
dx = ln |x| − 1

2
ln(x2 + 2) +

1

4

4− x

x2 + 2
− 1

4
√
2
tan−1 x√

2
+ C.

Here by tan−1 x, I mean arctanx which is the inverse function of tan function.

Since we often write sin2 x to denote (sinx)2. It is easy to confuse sin−1 x, cos−1 x, tan−1 x
with 1

sinx
, 1
cosx

, 1
tanx

. So I strongly recommend you to use, instead, the notations of arcsin, arccos, arctan
to denote the inverse functions of trig functions.
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4.5 Trig Substitution
In this section, let us use substitution with trigonometric function to integrate functions. We will
see that the substitutions help simplify some complicated terms like (±1± x2)α where α can be
any real number.

Example 4.5.1. Evaluate ∫
1√

1− x2
dx.

Solution. Set x = sin θ and then

dx = cos θdθ,
√
1− x2 = cos θ.

So ∫
1√

1− x2
dx =

∫
1

cos θ
cos θdθ = θ + C = arcsin x+ C.

Example 4.5.2. Solve ∫
2x+ 1

(x2 + 2)2
dx.

Solution. Note ∫
2x+ 1

(x2 + 2)2
dx =

∫
2x

(x2 + 2)2
dx+

∫
1

(x2 + 2)2
dx =: A+B.

For A, we have

A =

∫
d(x2 + 2)

(x2 + 2)2
= − 1

(x2 + 2)
.

As for B, we use the trigonometric substitution

x =
√
2 tan θ.

And then

dx =

√
2

cos2 θ
dθ, x2 + 2 = 2 tan2 θ + 2 =

2

cos2 θ
.

B =

∫
cos4 θ

4

√
2

cos2 θ
dθ =

√
2

4

∫
cos2 θ dθ

=

√
2

8

∫
(1 + 2 cos 2θ) dθ

=

√
2

8
(θ + sin θ cos θ) + C

=
1

4
√
2
arctan

x√
2
+

1

4

x

x2 + 2
+ C.
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Therefore ∫
4− x

x(x2 + 2)2
dx =

1

4

x− 4

x2 + 2
+

1

4
√
2
arctan

x√
2
+ C.

Summary of trig substitution.

√
a2 − x2, try x = a sin θ and then dx = a cos θdθ,

√
a2 − x2 = a cos θ;

√
a2 + x2, try x = a tan θ and then dx = a(cos θ)−2dθ,

√
a2 + x2 = a(cos θ)−1;

√
x2 − a2, try x = a(cos θ)−1 and then dx = a sin θ cos−2 θdθ,

√
a2 − x2 = a tan θ.

Sometimes you might need to do the substitution for more than once.

Example 4.5.3. Evaluate ∫
dx

(x2 + 2x+ 3)3/2
.

Solution. Since
x2 + 2x+ 3 = (x+ 1)2 + 2,

let u = x+ 1 and we get ∫
dx

(x2 + 2x+ 3)3/2
=

∫
du

(u2 + 2)3/2
.

Now we set
u =

√
2tan θ,

and then
du =

√
2 cos−2 θdθ, (x2 + 2x+ 3)3/2 = (2 cos−2 θ)3/2.

The integration becomes∫
du

(u2 + 2)3/2
=

∫ √
2 cos−2 θ

(2 cos−2 θ)3/2
=

1

2

∫
cos θ dθ

=
1

2
sin θ + C.

Use the fact that

sin θ =

√
1

1 + 1/ tan2 θ
.

We get the above
=

u

2
√
u2 + 2

+ C.

Convert to the original x variable, we obtain
x+ 1

2
√
x2 + 2x+ 3

+ C.
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4.6 Improper Integrals
We know that the integrals represent signed areas of bounded regions. One question is can we
compute the area of an unbounded regions? Is it possible that the area is bounded? For example,
we can compute the area of regions below f(x) = e−x for x ∈ [0,∞). Then we need to compute
the following: ∫ ∞

0

e−xdx.

We can do the following:∫ ∞

0

e−xdx = lim
R→∞

∫ R

0

e−xdx = lim
R→∞

(−e−x)|R0 = lim
R→∞

(−e−R + 1) = 1.

The area is bounded!
This is an integration of a function in a unbounded domain, which belongs to improper inte-

grals. We give a “proper” definition below.

Definition 4.13. Let a be a real number. The improper integral of f over [a,∞) is defined as the
following limit (if it exists): ∫ ∞

a

f(x)dx = lim
R→∞

∫ R

a

f(x)dx.

We say that the improper integral converges if the limit exists and it diverges if the limit does not
exist (including = ±∞).

Similarly we can define ∫ a

−∞
f(x)dx = lim

R→−∞

∫ a

R

f(x)dx.

Example 4.6.1. Show that
∫∞
2

dx
x1.1 converges and compute its value. Show that

∫∞
100

dx
x

diverges.

In the following theorem, we consider the integration with integrand = x−p in a unbounded
region away from 0.

Theorem 4.14. For a > 0, ∫ ∞

a

dx

xp
=


a1−p

p− 1
if p > 1,

diverges if p ≤ 1.

Example 4.6.2. Determine if
∫∞
−∞

1
1+x2dx converges and, if so, compute its value.

Notice that the anti-derivative of 1
1+x2 is arctanx.

Example 4.6.3. Use L’Hopital’s rule to calculate
∫∞
0

xe−xdx.
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Example 4.6.4. Escape Velocity. The earth exerts a gravitational force of magnitude F (r) =
GMem/r2 on an object of mass m at distance r from the center of the earth.

(a) Find the work required to move the object infinitely far from the earth.

(b) Calculate the escape velocity vesc on the earth’s surface.

Solution. To find out the work, recalling that W = F × d, we do integration. Suppose the object
start at the distance re to the center of the earth. To move it to R, we need force:∫ R

re

GMem

r2
dr = GMem(

1

re
− 1

R
).

Sending R → ∞, we obtain GMem
re

.
For the second question, we need some more knowledge of the physics. We need the velocity

to be large enough such that the object has enough energy which should be at least equal to the
“work" we found in part (a) (this is the so called the principle of conservation of energy). From
physics we know that the kinetic energy equals 1

2
mv2. So solving for

1

2
mv2esc =

GMem

re
,

we get GMem
re

=
√

2GMe/re.

4.6.1 Unbounded Functions

An integral over a finite interval for a unbounded integrand is also improper.

Definition 4.15. If f is continuous on [a, b) and limx→b− f(x) = ±∞, we define (assuming the
limit on the right-hand side exists)∫ b

a

f(x)dx = lim
R→b−

∫ R

a

f(x)dx.

We say that the improper integral converges if the limit exists and that it diverges otherwise.

Example 4.6.5. Calculate

(a).

∫ 9

0

dx√
x
, (b).

∫ 1/2

0

dx

x
.

Example 4.6.6. Calculate
∫ 9

0
dx

(x−1)2/3
.

In the following theorem, we study the integration with integrand = x−p in a region containing
0.

Theorem 4.16. For a > 0, ∫ a

0

dx

xp
=


a1−p

1− p
if p < 1,

diverges if p ≥ 1.
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4.6.2 Comparing Integrals

Sometimes we need to determining whether an improper integral converges or not, without finding
its exact value. Then we can do comparison.

Theorem 4.17. Assume for x > a, f(x) ≥ g(x) ≥ 0. We have

if
∫∞
a

f(x)dx converges, then
∫∞
a

g(x)dx also converges;

if
∫∞
a

g(x)dx diverges, then
∫∞
a

g(x)dx also diverges.

The comparison test is also valid for improper integrals of unbounded functions.

Example 4.6.7. Show that
∫∞
1

dx√
x3+1

converges.

Proof. Let us use the comparison test. To show convergence, we need to construct a simpler and
larger function. Looking at the denominator, x3 is the main ingredient comparing to 1 when x is
large. So consider

1√
x3 + 1

≤ 1√
x3

= x−3/2.

Notice ∫ ∞

1

x−3/2dx converges

and therefore
∫∞
1

dx√
x3+1

converges by the comparison test.

Example 4.6.8. Determine whether the following integral converges or not:∫ ∞

1

dx√
x+ e3x

,

∫ 2

0

dx

x8 + x2
.

Solution. When x is large 1√
x+e3x

behaves like 1
e3x

and the integration from 1 to ∞ for the latter
function converges: ∫ ∞

1

dx

e3x
=

1

3
e−3x.

Since
1√

x+ e3x
≤ 1

e3x
,

comparison test yields the convergence of the first integral.
For the second one, the integral is improper near x = 0. When x = 0,

x8 + x2 is comparable to x2.

Notice ∫ 1

0

dx

x2
diverges.
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To do comparison, we observe that when x ≤ 1

x8 + x2 ≤ 2x2.

Since
∫ 1

0
1/(2x2)dx diverges,∫ 2

0

dx

x8 + x2
≥

∫ 1

0

dx

x8 + x2
≥

∫ 1

0

dx

2x2
diverges.

5 Infinite Series

5.1 Sequences
By sequence we just mean a sequence of numbers, denoted as {an} = {a1, a2, ...} (sometimes
people also start with n = 0: {a0, a1, a2, ...}).

First let me introduce to you the well-known Fibonacci Sequence:

• We can define the sequence iteratively (recursive sequence) by taking F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for all n ≥ 3.

Given the first two terms, we can easily find out the first 10 terms one by one:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

If we continue this process, we are able to find as many terms as we want. But this is not convenient.
For example, one may ask can we find F1000 without computing all 999 terms ahead? Actually we
can! There exists a function f such that Fn = f(n).

The Fibonacci sequence appears in a surprisingly wide variety of situations, particularly in
nature. For instance, the number of spiral arms in a sunflower almost always turns out to be a
number from the Fibonacci sequence.

Another Recursive Sequence. Compute the two terms a2, a3 for the sequence defined recur-
sively by

a1 = 1, an =
1

2

(
an−1 +

2

an−1

)
.

Solution.

a2 =
1

2
(1 + 2/1) =

3

2
,

a3 =
1

2
(
3

2
+

2

3/2
) =

17

12
.
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One special class of sequence is the so-called converging sequence. We say that a sequence
{an} converges to a limit L, if |an −L| becomes arbitrarily small when n is sufficiently large, and
if so we write

lim
n→∞

an = L or an → L as n → ∞.

Definition 5.1. (not required) We say {an} converges to a limit L and write

lim
n→∞

an = L or an → L

if, for every ϵ > 0, there is a number M such that |an − L| < ϵ for all n > M .

• If no limit exists, we say that {an} diverges.

• If the terms increase without a bound (or decrease without a bound), we say that {an} di-
verges to infinity (or −∞).

Example 5.1.1. The Fibonacci sequence increases without a bound, and so the sequence diverges.
The sequence an := cos(nπ

2
) has no limit because

{an} = {1, 0,−1, 0, 1, ...}.

and 1,−1, ... do not converge.

5.1.1 Prove convergence

Example 5.1.2. Let an = n+4
n+3

. Prove that limn→∞ an = 1.

Proof. By definition, we need to find, for every ϵ > 0, a number M (which depends on ϵ) such that

|an − 1| ≤ ϵ for n ≥ M.

We have
an − 1 =

1

n+ 3

which can be arbitrarily small when n is large (limn→∞(an − 1) = 0)). Indeed for every ϵ > 0,
when n ≥ 1

ϵ
,

|an − 1| = 1

n+ 3
≤ ϵ.

This proves the convergence.

For some sequence {an}, we can understand it as a sequence defined by a function:

an = f(n).

Then we have the following criteria about convergence of sequences.
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Theorem 5.2. If limx→∞ f(x) exists and equals L. Then the sequence an = f(n) converges to L.

Can you apply this theorem to Example 5.1.2 with f(x) = x+4
x+3

? Do you have limx→∞ f(x) =
1?

Example 5.1.3. Calculate the limit of the sequence an = n+lnn
n2 .

Solution. Consider the following function

f(x) =
x+ lnx

x2
.

By L’Hopital’s rule,

lim
x→∞

f(x) = lim
x→∞

x+ lnx

x2
= lim

x→∞

1 + 1/x

2x
= 0.

Therefore the sequence an → 0 as n → ∞.

5.1.2 Geometric sequence

A geometric sequence is a sequence of the form

an = crn.

The number r is called the common ratio.

Example 5.1.4. Prove that for r ≥ 0, c > 0,

lim
n→∞

crn =


0 if r ∈ [0, 1),

c if r = 1,

∞ if r ∈ (1,∞).

The proof follows by considering the function f(x) = crx.

Theorem 5.3. [Squeeze Theorem]. Let {an}, {bn}, {cn} be sequences such that for some M,

an ≤ bn ≤ cn for n > M

and
lim
n→∞

an = lim
n→∞

cn = L.

Then
lim
n→∞

bn = L.
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Example 5.1.5. Suppose c ̸= 0. Prove

lim
n→∞

crn =

{
0 if r ∈ (−1, 0),

diverges if r ≤ −1.

Proof. Notice
−c|r|n ≤ crn ≤ c|r|n.

It follows from example 5.1.4, when r ∈ (−1, 0), which implies |r| < 1, we have both {−c|r|n}
and {c|r|n} converge to 0. Hence crn → 0.

When r = −1, the sequence is an alternating sequence with values {c,−c, c,−c...} which is
diverging.

When r < −1, the sequence also diverges since cr2n → ∞ and cr2n+1 → −∞.

Example 5.1.6. Prove that limn→∞
Rn

n!
= 0 for any R.

Proof. I will only consider the case when R > 0. (Think about what you can say if R ≤ 0.) Let
M be an integer such that

M ≤ R < M + 1.

We have
Rn

n!
=

(
R

1

R

2
...

R

M

)(
R

M + 1

R

M + 2
...
R

n

)
.

Let us call the value in the first bracket C and then we know C ≤ RM which is finite, and it is
independent of n. Then we obtain that

0 ≤ Rn

n!
≤ C

(
R

M + 1

R

M + 2
...
R

n

)
≤ C

R

n

and the latter → 0 as n → ∞. By Squeeze theorem, Rn

n!
→ 0.

Given a converging sequence {an} and a function f , we can form the new sequence {f(an)}.
When f is continuous, then

lim
n→∞

f(an) = f( lim
n→∞

an).

Example 5.1.7. For example given a sequence an = 3n
n+e−n which converges to 3. Then for any

continuous function f , we have f(an) → f(3). For example, if f = x2, then f(an) = ( 3n
n+e−n )

2

converges to 9; if f = ln x, then f(an) → ln 3.

5.1.3 Bounded sequence and Monotonic sequence (not required)

Next, we define the concepts of a bounded sequence and a monotonic sequence, concepts of great
importance for understanding convergence.

Definition 5.4. A sequence {an} is
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• Bounded from above if there is a number M such that an ≤ M for all n. The number M is
called an upper bound.

• Bounded from below if there is a number m such that an ≥ m for all n. The number m is
called a lower bound.

The sequence {an} is called bounded if it is bounded from above and below. A sequence that is
not bounded is called an unbounded sequence.

Theorem 5.5. Convergent sequences are bounded sequences.

Divergent sequences can be both bounded or unbounded. Can you give both the examples?

Definition 5.6. {an} is monotonic if either an ≤ an+1 for all n or an ≥ an+1. We call

• {an} is (strictly) increasing if an < an+1 for all n,

• {an} is (strictly) decreasing if an > an+1 for all n,

• {an} is non-decreasing if an ≤ an+1 for all n,

• {an} is non-increasing if an ≥ an+1 for all n.

Theorem 5.7. Bounded Monotonic Sequences Converge.

If {an} is increasing and an ≤ M , then {an} converges and the limit ≤ M .

If {an} is decreasing and an ≥ m, then {an} converges and the limit ≥ m.

Example 5.1.8. Verify that an =
√
n+ 1 −

√
n is decreasing and bounded from below. What is

the limit of an?

Solution. Let us consider the function f(x) =
√
x+ 1−

√
x. The function is decreasing because

f ′(x) < 0 for all x > 0. So an = f(n) is a decreasing sequence. It is not hard to see that the
sequence is bounded below by 0 i.e. an ≥ 0 for all n. Therefore by the theorem, the sequence has
a limit.

Notice

an =
√
n+ 1−

√
n =

(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
1√

n+ 1 +
√
n
.

Therefore an → 0.

Example 5.1.9. Show that the following sequence is bounded and increasing:

a1 =
√
2, a2 =

√
2
√
2, a3 =

√
2

√
2
√
2, ...

Prove the limit limn→∞ an exits and find out the value.
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Solution. Step 1. bounded from above. We certainly have that a1 < 2. Suppose ak < 2. Notice

ak+1 =
√

2
√
ak,

then

ak=1 <

√
2
√
2 ≤ 2.

Thus the sequence is bounded from above by 2.

Step 2. Increasing.
Since an is positive and an ≤ 2, then

an+1 =
√
2an <

√
an × an = an

which implies that the sequence is increasing. From the monotone convergence theorem, an con-
verges and let us suppose the limit equals L.

Step 3. Find L.
Since an+1 =

√
2an, by passing n → ∞, we get

lim
n→∞

an+1 =
√
2 lim
n→∞

an

which implies that
L =

√
2L.

Thus L can only be 0 or 2. We eliminate L = 0, because the terms an are positive and they all
≥ a1 =

√
2 > 0. We must have L = 2.

Example 5.1.10. (Very hard!) The Fibonacci sequence {Fn} diverges since it is unbounded.
Please show the sequence defined by the ratios an = Fn+1

Fn
converges. The limit is known as

the golden ratio.

Proof. (Hint) Since Fn+2 = Fn+1 + Fn, dividing by Fn+1, we get

an+1 = 1 +
1

an
. (4)

Known

a2 = F3/F2 = 2 ≥ 1 +
√
5

2
=: c.

It can be shown that for all n ≥ 2, an ≥ c. Why?
Next it can be shown that an is decreasing. Why? Therefore an converges. Suppose the limit

is L.
Passing n → ∞ on both sides of (4), we get

L = 1 +
1

L

this tells that L = 1+
√
5

2
or 1−

√
5

2
. We pick L = 1+

√
5

2
= c, because an ≥ c for all n.

42



5.2 Infinite Series
Given a sequence {an}, in this section we study the sum of an:

a1 + a2 + a3 + ...+ an + ..

This infinite sums is also called infinite series. Clearly if {an} is a converging sequence, then the
infinite sum equals to ±∞ as long as the limit of an is not 0.

In order to compute the infinite sum, we try to make it a “finite sum”. Therefore we define the
partial sums:

S1 = a1,

S2 = a1 + a2, ...

Sn = a1 + a2 + ...+ an, ...

We use the following notations:

N∑
n=1

an = a1 + a2 + ...+ aN ,
∞∑
n=1

an = a1 + a2 + ...

Definition 5.8. An infinite series
∑∞

n=1 an converges to S if the sequence of its partial sums {Sn}
converges to S.

If the limit does not exist or it is ±∞, we say that the infinite series diverges.

Example 5.2.1. Compute
∞∑
n=1

1

n(n+ 1)
.

Solution. Notice
1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Therefore

SN =
N∑

n=1

1

n(n+ 1)

=
N∑

n=1

1

n
− 1

(n+ 1)

= 1− 1

N + 1

which converges to 1 as N → ∞. So the series equals 1.
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Theorem 5.9. [Geometric series] For the geometric series
∑∞

n=0 cr
n with r ̸= 1,

SN = c+ cr + ...+ crn =
c(1− rN+1)

1− r
.

If |r| < 1, then
∞∑
n=0

crn =
c

1− r
.

Example 5.2.2. Evaluate
∑∞

n=0
2+3n

5n
.

Solution.
∞∑
n=0

2 + 3n

5n
=

∞∑
n=0

2

5n
+

∞∑
n=0

3n

5n

= 2
1

1− (1/5)
+

1

1− (3/5)
= 5.

Theorem 5.10. [nth Term divergence test] If limn→∞ an ̸= 0, then the series
∑∞

n=k an diverges
for any k.

While if limn→∞ an = 0, the series
∑∞

n=k an can be both divergent or convergent.

Example 5.2.3. Prove the divergent of
∑∞

n=1(−1)n n
4n+1

.

Solution. Notice that an = (−1)n n
4n+1

does not approach a limit. The series diverges by the
test.

Example 5.2.4. Prove the divergence of
∑∞

n=1
1√
n

.

Solution. Notice the partial sums

SN =
1√
1
+

1√
2
+ ...+

1√
N
.

We have N terms in SN and each one ≥ 1√
N

. Therefore

SN ≥ N × 1√
N

=
√
N

which → ∞ as N → ∞. The series diverges.
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5.3 Convergence of Series
In this section we consider non-negative series

∑∞
n=1 an where each an ≥ 0. For such a series, we

immediately know that the corresponding partial sums Sn has to be non-decreasing in n.

Theorem 5.11. Given a positive series
∑∞

n=1 an, then either

(i) The partial sums SN are bounded from above and then
∑∞

n=1 an converges. Or

(ii) The partial sums SN are unbounded and then
∑∞

n=1 an diverges.

Theorem 5.12. [Integral Test] Suppose an = f(n) ≥ 0 for some non-increasing, continuous
function f(x), x ≥ 1.

(i) If
∫∞
1

f(x)dx converges, then
∑∞

n=1 an converges.

(ii) If
∫∞
1

f(x)dx diverges, then
∑∞

n=1 an diverges.

Think about if given an alternating series, can we have such an integral test? Why or why not?

Example 5.3.1. Show that
∑∞

n=1
1
n

diverges.

Solution. Consider f(x) = 1
x

and then an = f(n). Since the integral of
∫∞
1

f(x)dx diverges, the
series

∑∞
n=1

1
n

also diverges.

Example 5.3.2. The infinite series
∑∞

n=1
1
np converges if p > 1 and diverges otherwise.

Example 5.3.3. Does
∑∞

n=2
1

n(lnn)2
converge?

Solution. Let us use the integral test for f(x) = 1
x(lnx)2

. The substitution u = ln x yields that∫ ∞

2

1

x(lnx)2
dx =

∫ ∞

ln 2

du

u
( here we do the integration from 2 to ∞ )

= lim
R→∞

(
1

ln 2
− 1

R

)
=

1

ln 2
< ∞.

The integral test shows that
∑∞

n=2
1

n(lnn)2
converges.

Next we introduce the comparison test. This test is, in the spirit, very similar to the comparing
techniques we used to determine an improper integral is convergent or not, or the squeeze theorem
we used to compute the limit of a sequence.

Theorem 5.13 (Comparison test). Assume for some N > 0, bn ≥ an ≥ 0 holds for all n ≥ N .
Then

(i) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.
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(ii) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

Theorem 5.14 (Limit Comparison test). Let an, bn be non-negative sequences. Assume that there
exist m,M such that

m ≤ lim inf
n→∞

an
bn

≤ lim sup
n→∞

an
bn

≤ M.

Here if the limit limn→∞
an
bn

exists, then

lim inf
n→∞

an
bn

= lim sup
n→∞

an
bn

= lim
n→∞

an
bn

.

(i) If ∞ > M > m > 0, then
∑∞

n=1 an converges, if and only if,
∑∞

n=1 bn converges.

(ii) If m = ∞ and
∑∞

n=1 an converges, then
∑∞

n=1 bn converges.

(iii) If M = 0 and
∑∞

n=1 bn converges, then
∑∞

n=1 an converges.

If the limit limn→∞
an
bn

exists, then in the above we can select

m = M = lim
n→∞

an
bn

.

Example 5.3.4. Show that
∑∞

n=2
n2

n4−n−1
converges.

Solution. Let us set

an =
n2

n4 − n− 1
and bn =

1

n2
.

Notice

lim
n→∞

an
bn

= lim
n→∞

n4

n4 − n− 1
= 1.

Since
∑∞

n=2 bn =
∑∞

n=2
1
n2 converges, therefore by the Limit comparison test,

∑∞
n=2

n2

n4−n−1
also

converges.

Example 5.3.5. Does
∑∞

n=2
1

(n2−3)1/3
converge?

Solution. Notice

lim
n→∞

(
1

(n2 − 3)1/3

)/( 1

n2/3

)
= lim

n→∞

(
1

(1− 3n−2)1/3

)
= 1.

By the limit comparison test, the divergence of
∑∞

n=2
1

n2/3 yields the divergence of
∑∞

n=2
1

(n2−3)1/3
.
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Review for Midterm 2
Complex numbers and trig integration

eiθ = cos θ + i sin θ.

ei
π
4 =

√
2

2
(1 + i), ei

π
3 =

1

2
+

√
3

2
i, ei

π
6 =

√
3

2
+

1

2
i...

We can use this formula to compute trig integration: Example 5.3.1, Example 5.3.2. The idea
is to use

cos(cx) =
ecix + e−cix

2
, sin(cx) =

ecix − e−cix

2i
.

Substitution is another frequently used method. Recall Example 5.3.5: Evaluate
∫
tan3 x dx.

We are going to use both substitution method and partial fractions.

Solution. For (1). consider u = sin x. Then∫
tan3 x dx =

∫
sin3 x

cos3 x

1

cosx
d sinx

=

∫
sin3 x

(1− sin2 x)2
d sinx

=

∫
u3

(1− u2)2
du.

Then we apply the Partial fraction method (in Section 5.4) to get

u3

(1− u2)2
=

u3

(u− 1)2(u+ 1)2
=

1

2 (u+ 1)
− 1

4 (u+ 1)2
+

1

2 (u− 1)
+

1

4 (u− 1)2
.

After integration, we get

1

2
ln |(u− 1)(u+ 1)|+ 1

4

1

u+ 1
− 1

4

1

u− 1
+ C

=
1

2
ln |1− u2|+ 1

2

1

1− u2
+ C

= − ln | secx|+ 1

2
sec2 x+ C.

The last technique in this part is the trig substitution: Recall
√
a2 − x2, try x = a sin θ and then dx = a cos θdθ,

√
a2 − x2 = a cos θ;

√
a2 + x2, try x = a tan θ and then dx = a(cos θ)−2dθ,

√
a2 + x2 = a(cos θ)−1;

√
x2 − a2, try x = a(cos θ)−1 and then dx = a sin θ(cos θ)−2dθ,

√
a2 − x2 = a tan θ.

Sometimes the integrand is not exactly of the above forms, we might need to do substitution.
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Example 5.3.6. Evaluate ∫
x2dx

x2 + 2x+ 3
.

Solution. Since
x2 + 2x+ 3 = (x+ 1)2 + 2,

let u = x+ 1 and we get∫
x2dx

x2 + 2x+ 3
=

∫
(u− 1)2

u2 + 2
du

=

∫
u2 − 2u+ 1

u2 + 2
du

=

∫
u2 + 2

u2 + 2
du−

∫
2u

u2 + 2
du−

∫
1

u2 + 2
du

=: A1 + A2 + A3.

Then A1 = u + C. For A2, notice 2udu = du2 and thus we use substitution w := u2. For A3, we
use trig substitution

u =
√
2tan θ.

Please finish the computations. :)

Improper Integration

Example 5.3.7. Compute
∫∞
1

1
2+x2dx.

Solution. Since
1

2 + x2
≤ 1

x2

and ∫ ∞

1

1

x2
< ∞,

So the original improper integral converges.
Actually we can use trig substitution to find its value: let x =

√
2 tan θ and we have∫ ∞

1

1

2 + x2
dx =

∫ π/2

arctan(1/
√
2)

cos2 θ d tan θ

2

=

∫ π/2

arctan(1/
√
2)

dθ

2

=
π

4
− 1

2
arctan(1/

√
2)

Let us solve Example 5.6.3: calculate
∫∞
0

xe−xdx.
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Solution. Use integration by parts we get∫ R

0

xe−xdx = (−xe−x)|R0 −
∫ R

0

e−xdx = 1− R + 1

eR
.

Take R → ∞ and apply the L’Hopital’s rule,∫ ∞

0

xe−xdx = 1− lim
R→∞

R + 1

eR
= 1.

Sequence and series

Example 5.3.8. Determine the limit

an = ln

(
12n+ 2

−9 + 4n

)
.

The answer is ln 3.

Recall Series:
∑∞

1 an.
Power series: for |r| < 1,

∞∑
n=0

crn = c+ cr + cr2 + cr3 + ... =
c

1− r

We can use functions to determine whether a positive series is convergent. f needs to be
positive, decreasing and continuous. See Example 6.3.1- Example 6.3.3

Another method is the comparison test and limit comparison test.

Example 5.3.9. Does
∑∞

n=1
1√
n3n

converge?

Solution. For n ≥ 1,
1√
n3n

≤ 1

3n
.

The larger series
∑∞

n=1
1
3n

converges and therefore the original one converges.

5.4 Absolute and Conditional Convergence
In the previous section, we mainly considered positive series. Now let us study the general series.

Definition 5.15. [Absolute Convergence] The series
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an|
converges.

Theorem 5.16. [Absolute Convergence Implies Convergence] If
∑∞

n=1 |an| converges,
∑∞

n=1 an
also converges.
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Example 5.4.1. Verify that
∑∞

n=1
(−1)n

n2 converges.

Solution. Since
∞∑
n=1

∣∣∣∣(−1)n

n2

∣∣∣∣ = ∞∑
n=1

1

n2

which is a convergent series, so
∑∞

n=1
(−1)n

n2 is absolutely convergent. By the theorem,
∑∞

n=1
(−1)n

n2

is convergent.

Definition 5.17. [Conditional Convergence] An infinite series
∑∞

n=1 an converges conditionally
if

∑∞
n=1 an converges but

∑∞
n=1 |an| diverges.

Example 5.4.2. Show
∑∞

n=1
(−1)n

n
converges conditionally.

Proof. It is not hard to see that
∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ = ∞∑
n=1

1

n

diverges. To prove the claim, we only need to show the partial sum of
∑∞

n=1
(−1)n

n
converges. Note

S2N =
2N∑
n=1

(−1)n

n

= −1

1
+

1

2
− 1

3
+

1

4
− ...− 1

2N − 1
+

1

2N

= −(
1

1
− 1

2
)− (

1

3
− 1

4
)− ...− (

1

2N − 1
− 1

2N
)

= −
N∑
i=1

(
1

2i− 1
− 1

2i
).

So {S2N} (as a sequence) is a decreasing sequence. Since∣∣∣∣ 1

2i− 1
− 1

2i

∣∣∣∣ = ∣∣∣∣ 1

(2i− 1)(2i)

∣∣∣∣ ≤ 1

(2i− 1)2
,

triangle inequality implies that

|S2N | ≤
N∑
i=1

1

(2i− 1)2
≤ π2

6
.

It follows from Theorem 5.7 that {S2N} has a limit. Finally since the difference of S2N+1 and S2N

converges to 0, Sn has the same limit as {S2N}.
The convergence of the partial sum implies that

∑∞
n=1

(−1)n

n
converges.
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In this example, we see that the numbers in the series is aligned as one positive number followed
by a negative one, and then positive again. We will call it an alternating series:

∞∑
n=1

(−1)n−1bn

where bn are positive. For such series, we have the following theorem.

Theorem 5.18. [Alternating Series Test] Assume that {bn} is a positive sequence that is decreas-
ing and converges to 0. Then

∞∑
n=1

(−1)n−1bn converges.

The proof is given by estimating the difference of partial sums: |Sn2 − Sn1| for some n2 >
n1 >> 1. If |Sn2 − Sn1| can be arbitrarily small as (n2 >) n1 becomes large, then the partial sums
{Sn} converges which implies the convergence of the alternating series. (The proof is not required.
You are required to be able to apply the theorem which includes checking the assumptions, and
supply a complete justification.)

Example 5.4.3. Show that
∞∑
n=1

(−1)n−1

√
n

converges conditionally. Furthermore if S is the sum of the series, then 0 < S < 1.

Proof. It is direct to see that
∑∞

n=1

∣∣∣ (−1)n−1
√
n

∣∣∣ diverges.

Next the terms bn = (−1)n−1
√
n

are positive and decreasing, and limn→∞ bn = 0. By the Alternat-
ing series test, the series converges conditionally. Since

S =
∞∑
n=1

(−1)n−1

√
n

= b1 −
∞∑
n=1

(b2n − b2n+1) < b1,

we get S < 1. Also

S =
∞∑
n=1

(−1)n−1

√
n

=
∞∑
n=1

(b2n−1 − b2n) > 0.

Remark 5.19. In general for alternating series converging to S with partial sums SN , we have

Sp < S < Sq

for any even p and odd q.
Also if bn > 0 for all n, we have

|S − SN | < bN+1.

Can you prove these two claims?
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Example 5.4.4. Consider a conditionally convergent sequence
∑∞

n=1
(−1)n−1

n
(why?). If S repre-

sent the sum, show that

|S − S6| <
1

7
.

Next find an N such that SN approximates S with error less than 10−2.

Solution. By the remark

|S − S6| < b7 =
1

7
.

Also we have
|S − SN | < bN+1 =

1

N + 1
.

To have error smaller than 1
100

, we need N ≥ 99.

Review for Midterm 2
Complex numbers and trig integration

eiθ = cos θ + i sin θ.

ei
π
4 =

√
2

2
(1 + i), ei

π
3 =

1

2
+

√
3

2
i, ei

π
6 =

√
3

2
+

1

2
i...

We can use this formula to compute trig integration: Example 5.3.1, Example 5.3.2. The idea
is to use

cos(cx) =
ecix + e−cix

2
, sin(cx) =

ecix − e−cix

2i
.

Substitution is another frequently used method. Recall Example 5.3.5: Evaluate
∫
tan3 x dx.

We are going to use both substitution method and partial fractions.

Solution. For (1). consider u = sin x. Then∫
tan3 x dx =

∫
sin3 x

cos3 x

1

cosx
d sinx

=

∫
sin3 x

(1− sin2 x)2
d sinx

=

∫
u3

(1− u2)2
du.

Then we apply the Partial fraction method (in Section 5.4) to get

u3

(1− u2)2
=

u3

(u− 1)2(u+ 1)2
=

1

2 (u+ 1)
− 1

4 (u+ 1)2
+

1

2 (u− 1)
+

1

4 (u− 1)2
.
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After integration, we get

1

2
ln |(u− 1)(u+ 1)|+ 1

4

1

u+ 1
− 1

4

1

u− 1
+ C

=
1

2
ln |1− u2|+ 1

2

1

1− u2
+ C

= − ln | secx|+ 1

2
sec2 x+ C.

The last technique in this part is the trig substitution: Recall
√
a2 − x2, try x = a sin θ and then dx = a cos θdθ,

√
a2 − x2 = a cos θ;

√
a2 + x2, try x = a tan θ and then dx = a(cos θ)−2dθ,

√
a2 + x2 = a(cos θ)−1;

√
x2 − a2, try x = a(cos θ)−1 and then dx = a sin θ(cos θ)−2dθ,

√
a2 − x2 = a tan θ.

Sometimes the integrand is not exactly of the above forms, we might need to do substitution.

Example 5.4.5. Evaluate ∫
x2dx

x2 + 2x+ 3
.

Solution. Since
x2 + 2x+ 3 = (x+ 1)2 + 2,

let u = x+ 1 and we get∫
x2dx

x2 + 2x+ 3
=

∫
(u− 1)2

u2 + 2
du

=

∫
u2 − 2u+ 1

u2 + 2
du

=

∫
u2 + 2

u2 + 2
du−

∫
2u

u2 + 2
du−

∫
1

u2 + 2
du

=: A1 + A2 + A3.

Then A1 = u + C. For A2, notice 2udu = du2 and thus we use substitution w := u2. For A3, we
use trig substitution

u =
√
2tan θ.

Please finish the computations. :)

Improper Integration

Example 5.4.6. Compute
∫∞
1

1
2+x2dx.
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Solution. Since
1

2 + x2
≤ 1

x2

and ∫ ∞

1

1

x2
< ∞,

So the original improper integral converges.
Actually we can use trig substitution to find its value: let x =

√
2 tan θ and we have∫ ∞

1

1

2 + x2
dx =

∫ π/2

arctan(1/
√
2)

cos2 θ d tan θ

2

=

∫ π/2

arctan(1/
√
2)

dθ

2

=
π

4
− 1

2
arctan(1/

√
2)

Let us solve Example 5.6.3: calculate
∫∞
0

xe−xdx.

Solution. Use integration by parts we get∫ R

0

xe−xdx = (−xe−x)|R0 −
∫ R

0

e−xdx = 1− R + 1

eR
.

Take R → ∞ and apply the L’Hopital’s rule,∫ ∞

0

xe−xdx = 1− lim
R→∞

R + 1

eR
= 1.

Sequence and series

Example 5.4.7. Determine the limit

an = ln

(
12n+ 2

−9 + 4n

)
.

The answer is ln 3.

Recall Series:
∑∞

1 an.
Power series: for |r| < 1,

∞∑
n=0

crn = c+ cr + cr2 + cr3 + ... =
c

1− r

We can use functions to determine whether a positive series is convergent. f needs to be
positive, decreasing and continuous. See Example 6.3.1- Example 6.3.3

Another method is the comparison test and limit comparison test.
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Example 5.4.8. Does
∑∞

n=1
1√
n3n

converge?

Solution. For n ≥ 1,
1√
n3n

≤ 1

3n
.

The larger series
∑∞

n=1
1
3n

converges and therefore the original one converges.

5.5 Ratio and Root Tests
Let us present two tests concerning the problem whether a series converges or diverges.

Theorem 5.20. [Ratio Test] Assume that the following limit exists:

ρ := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
If ρ < 1, the the series

∑∞
k=1 ak converges absolutely. If ρ > 1, then

∑∞
k=1 ak diverges. If ρ = 1,

the test is inconclusive.

Remark 5.21. Let us compare the test with the geometric series:

a+ ar + ar2 + ar3 + ...

which converges if |r| < 1 and diverges if |r| > 1.

Example 5.5.1. Prove that
∑∞

n=1(−1)n n2

2n
converges.

Example 5.5.2. Prove that
∑∞

n=1
10n

n!
converges.

Example 5.5.3. Show
∑∞

n=1(−1)n n!
10n

diverges.

Theorem 5.22. [Root Test] Assume that the following limit exists: L := limn→∞
n
√
|an|. If L < 1,

then
∑∞

n=1 an converges absolutely. If L > 1, then
∑∞

n=1 an diverges.

Example 5.5.4. Show that
∑∞

n=1

(
n

2n+3

)n converges.

Example 5.5.5. Show
∑∞

n=1
10n

n
√
n diverges.

Solution. Let us use the root test:

lim
n→∞

|an|1/n = lim
n→∞

(
10n

n
√
n

)1/n

= lim
n→∞

10

n
1√
n

.

Notice by L’Hopital’s rule

lim
n→∞

n
1√
n = e

limn→∞
lnn√

n = e
limn→∞

1/n

1/(2
√
n) = e

limn→∞
2√
n = 1.

Therefore
lim
n→∞

|an|1/n = 10

which implies that the series diverges.
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5.6 Power Series
By power series we mean

a0 + a1r + a2r
2 + ...

If we vary the “r”, we get a polynomial of infinite degree:

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + ....

More generally, we consider a power series near point x0:

f(x) =
∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + ....

These are functions of x.

Shifting the Summation index.

Example 5.6.1. Express the series

∞∑
n=2

n(n− 1)anx
n−2

as a series where the generic term is xk.

Solution. Set k = n− 2. Then
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

(This is like doing substitution in the summation index.)

We say the series

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + ....

converges at x = c if
∑∞

n=0 an(c − x0)
n converges. If the limit does not exist, we say the series

diverges at x = c. Moreover if
∞∑
n=0

|an(c− x0)
n|

converges, we say the series converges absolutely at point x = c.
As before, for series we are interested in the its convergence property. So for power series, we

want to find the points at which the series converges. There is a surprisingly simple characterization
of the structure of those points.
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Theorem 5.23. [Radius of convergence] The radius of convergence r is a nonnegative real number
or ∞ such that the series converges if |x− x0| < r, and diverges if |x− x0| > r.

Let us generalize the previous “root test” and “ratio test” (for series) to the ones for power
series. The radius of convergence r can be derived through the root test or the ratio test:

Root test. r =
1

lim supn→∞
n
√
an

,

Ratio test. when the following limit exists, it satisfies, r = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ .
Example 5.6.2. Determine the converge set of

∞∑
n=0

(−2)n

n+ 1
xn.

Solution. By the ratio test, r = 1
2
. Let us check the endpoints. When x = 1

2
, we get an alternating

series, which converges. When x = −1
2
, the series diverges. Thus the series converges in (−1

2
, 1
2
].

Sum of two Power Series.
Given two power series:

f(x) =
∞∑
n=0

anx
n, g(x) =

∞∑
n=0

bnx
n.

Then

f(x) + g(x) =
∞∑
n=0

(an + bn)x
n.

Product of two Power Series.

f(x)g(x) = (
∞∑
n=0

anx
n)× (

∞∑
n=0

bnx
n)

= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + ...

The general formula is

f(x)g(x) =
∞∑
n=0

cnx
n with cn :=

n∑
k=0

akbn−k. (5)

This is called the Cauchy Product.
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Theorem 5.24 (Differentiation and Integration). If

f(x) =
∞∑
n=0

anx
n

has a positive radius of convergence r, then f is differentiable in the interval |x| < r:

f ′(x) =
∞∑
n=1

nanx
n−1.

Also f has antiderivatives in |x| < r:∫
f(x)dx = C +

∞∑
n=0

an
n+ 1

xn+1.

Remark 5.25. We can replace x in the above theorem by (x− x0).
If we inductively apply the first part of the theorem, we know that f is nth differentiable for all

n ≥ 1. In particular, this implies that functions that can be represented by power series are smooth.

Example 5.6.3. Find the power series for 1
1−x

.

Solution.
1

1− x
= 1 + x+ x2 + ... =

∞∑
0

xn. (6)

The radius of convergence is 1.

Example 5.6.4. Find a power series for each of the following functions:

(a)
1

1 + x2
, (b)

1

(x− 1)2
, (c) arctan x.

Solution. Replacing x by −x2 in (6), we get

1

1 + x2
= 1− x2 + x4 − ... =

∞∑
0

(−1)nx2n. (7)

For (b), since 1
(1−x)2

is the derivative of 1
1−x

, by differentiating (6) twice, we get

(
1

1− x
)′ =

1

(1− x)2
= 1 + 2x+ 3x2 + ... =

n∑
1

nxn−1.

For (c), notice

arctanx =

∫ x

0

1

1 + t2
dt.

58



Therefore we can integrate the series (7) to get

arctanx =

∫ x

0

1

1 + t2
dt

=
∞∑
0

∫ x

0

(−1)nt2ndt

=
∞∑
0

(−1)nx2n+1

2n+ 1
.

Can you figure out the radius of convergence?

5.7 Taylor Series
The Taylor series of a function is an infinite sum of terms that are expressed in terms of the func-
tion’s derivatives at a single point.

Definition 5.26. If f is infinitely differentiable at x = c, then the Taylor series for f(x) centered
at c is the power series

f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + ... =

∞∑
n=0

f (n)(c)

n!
(x− c)n.

If you look at the partial sums of the Taylor series, then the polynomials give a good ap-
proximation of the function at x = c. For example, the first two terms of the Taylor series is
just L(x) := f(c) + f ′(c)(x − c). This is a linear approximation of f at x = c which satisfies
L(c) = f(c) and L′(c) = f ′(c).

Example 5.7.1. Find the Taylor series of a polynomial f(x) = 1 + x+ x2 + x3 at x = 0.

What is the Taylor series at x = c for general c ∈ R?

Example 5.7.2. Show that the Taylor series for ex at x = 0 is

1 + x+
x2

2!
+

x3

3!
+ ...

and the radius of convergence is ∞.

Example 5.7.3. Find the Taylor series for f(x) = x−3 centered at c = 1.

Solution. Let us compute fn(x).

f ′(x) = −3x−4, f ′′(x) = (−3)(−4)x−5...
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in general we have
fn(x) = (−1)n3× 4× ...× (n+ 2)x−3−n.

Therefore

fn(1) = (−1)n
(n+ 2)!

2
.

The Taylor series is
∞∑
n=0

(−1)n
(n+ 2)(n+ 1)

2
(x− 1)n.

The radius of convergence equals 1.

Theorem 5.27. 1. If f can be represented as a power series centered at c in an interval I
containing c, then the power series is the Taylor series.

2. If f is only known to be smooth on I , then Taylor series and f may not equal on the whole
interval I .

3. If f is smooth on I and there exists a constant C > 0 such that

|f (k)(x)| ≤ Ck+1k! for all k ≥ 0 and x ∈ I.

Then f equals its Taylor series on I .

Let me show you an example of 2. Actually, the function

f(x) :=

{
e−

1
x2 if x ̸= 0,

0 if x = 0

is infinitely differentiable at x = 0, and has all derivatives zero there. Consequently, the Taylor
series of f(x) about x = 0 is identically zero. However, f(x) is not the zero function.

Example 5.7.4. Show that for all x ∈ R,

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
.

Solution. Step 1. Compute derivatives of f . Step 2. Find the Taylor series. Step 3. Check the
conditions of the Theorem 5.27 for I = (−R,R) for any R → ∞. Step 4. Passing R → ∞.

Definition 5.28. The Taylor series at x = 0 is also called the Maclaurin series.

Example 5.7.5. Find the Maclaurin series for

x2ex, e−x2

,
1

(x− 1)2
, ln(1 + x), arctanx.
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Example 5.7.6. Write out the terms up to degree 5 in the Maclaurin series for f(x) = ex cosx.

Solution. We multiply the fifth-order Maclaurin polynomials of ex and cosx together:

(1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
)(1− x2

2!
+

x4

4!
).

Distribute the term and drop the terms of degree greater than 5. We obtain

1 + x− x3

3
− x4

6
− x5

30
.

Thus

ex cosx = 1 + x− x3

3
− x4

6
− x5

30
+ ...

Euler’s Formula. Use i2 = 1, we find

eix = cos x+ i sinx.

Example 5.7.7. Express
∫ 1

0
sin(x2)dx as an infinite series centered at point 0.

Solution. Since

sinx =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1,

we get

sinx2 =
∞∑
n=0

(−1)n

(2n+ 1)!
x4n+2.

Then ∫ 1

0

sin(x2)dx =
∞∑
n=0

∫ 1

0

(−1)n

(2n+ 1)!
x4n+2 =

∞∑
0

(−1)n

(2n+ 1)!

1

4n+ 3
.

Using series to represent a function can be helpful in determine the limit. For example we can
get

lim
x→0

sinx

x
= 1, lim

x→0

1− cosx

x2
= 0.

Moreover using the Taylor series of cosx, we find

lim
x→0

1− cosx

x2
= lim

x→0

1− (1− x2

2!
+ ...)

x2
=

1

2
.

Example 5.7.8. Show limx→0
x−sinx
x3 cosx

= 1
6
.
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Binomial Series. We define the binomial coefficient: if n, k are non-negative integers and
k ≤ n, (

n

k

)
:=

n(n− 1)(n− 2)...(n− k + 1)

k!
,

(
n

0

)
:= 1.

If n, k are non-negative integers, and k > n, then
(
n
k

)
:= 0. We have the binomial formula (n, k

are non-negative integers),

(1 + x)n =
n∑

k=0

(
n

k

)
xk =

∞∑
k=0

(
n

k

)
xk.

More generally, if k is a positive integer, and n is any number but not an integer, then we define(
n

k

)
:=

n(n− 1)(n− 2)...(n− k + 1)

k!
.

Example 5.7.9. (
4

2

)
= 6,

(
4/3

3

)
= − 4

81
.

Theorem 5.29 (Binomial series). For any exponent a ∈ R and for |x| < 1, we have

(1 + x)a =
∞∑
k=0

(
a

k

)
xk.

Example 5.7.10. Find the Maclaurin series for f(x) = 1√
1−x2 .

Solution. Let us first find out the Maclaurin series for (1 + x)−1/2: by the binomial series,

(1 + x)−1/2 =
∞∑
k=0

(
−1/2

k

)
xk.

Therefore

1√
1− x2

= (1− x2)−1/2 =
∞∑
k=0

(
−1/2

k

)
(−1)kx2k = 1 +

1

2
x2 +

3

8
x4 + ...
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