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2 Flows on the line
(The section numbers are the same as those in the textbook.)

We start with reviewing the definitions of differential equations.

• An Differential Equation (DE) is any equation that involves derivatives.

• An Ordinary Differential Equation (ODE) is a DE that has only one independent variable
and all derivatives are with respect to this variable.

• An DE which has derivatives with respect to more than one variables is called a Partial
Differential Equation (PDE).

Suppose x = f(t) is a given smooth function. Then the derivative x′ describes the rate of
change of x with respect to t.

There are several notations for the derivatives:

• x′(t) – Newton notation;

• dx
dt

– Leibnitz notation;

• other notations: xt, ẋ etc.

The Order of a DE is the number of the highest derivative in the equation.

2.1 Autonomous system
An first order autonomous differential equation is an equation of the form

dx

dt
= f(x).

Let’s think of t as indicating time. This equation says that the rate of change dx
dt

of the function
x(t) is given by some rule. The rule says that if the current value is x, then the rate of change is
f(x).

Note that x′ = f(x, t) is not an autonomous system.
Let us look at the following example:

Example 2.1.1. dx
dt

= sin x.

Solution. This is a separable differential equation which is to say that we are able to separate the
variables x and t as follows:

dx

sinx
= dt.

After integration, we get

t =

∫
1

sinx
dx.
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Since ∫
1

sinx
dx =

∫
sinx

sin2 x
dx =

∫
− d cosx

1− cos2 x

= −1

2

∫
1

1− cosx
+

1

1 + cos x
d cosx

= −1

2
ln |1 + cos x

1− cosx
|+ C = − ln |1 + cos x

sinx
|+ C.

(Think about why the last equality holds?)

It is great that we obtain an explicit solution to the problem x′ = sinx. However the explicit
form is complicated and we can not tell some useful properties of solutions from it immediately.

Some properties of solutions:

• Suppose at t = 0, x(0) = x0 for some real number x0. The solution is increasing or
decreasing?

• Suppose at t = 0, x(0) = x0 for some real number x0. What happens to the solution as
t → ∞? (Asymptotic behaviour.)

Let us draw the graph of (x, sinx) which then, by the equation, is the graph of (x, x′).
Let us think about the solution x(t) to

x′(t) = sin x, x(0) = x0

as a particle moving on the real line starting at position x = x0 (we call the solution as a flow along
the vector field sinx). There are several typical cases:

• If x0 = −π
4

, then from the graph, x′(0) = sin x0 < 0, and so the solution x(t) is decreasing
(moving to the left). The solution moves toward x = −π as t → ∞.

• If x0 =
π
2
, think about what happens to x(t) as t → ∞?

• If x0 = π, then x′(0) = 0 and x(t) = π is a constant solution. x = π will be called as a fixed
point. All values z such that sin z = 0 are called fix points.
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Figure 1: Figure 2.1.2

Figure 2: Figure 2.1.3

• x = (2k + 1)π with k ∈ Z are called stable fixed points because any solutions started near
those points are moving towards those points.

• x = 2kπ with k ∈ Z are called unstable fixed points because any solutions started near those
points are moving away from those points.

The graph of (x′, x) tells us the dynamics of the autonomous system in large time. Using the
information, we can roughly draw the picture of solutions starting at different initial positions.

For example, if x(0) = x0 = π
4
, then the solution with this initial data is increasing as t

increases. Also from the graph we know that the rate of x(t) increases is again increases and
reaches its maximum when x(t) becomes π

2
. Then then x(t) increases with a smaller and smaller

speed. Eventually as t → ∞, x(t) → π. Thus we can draw the graph of x(t) as in the Figure 2.1.2
above.

Next we look for the rough shapes of solutions with different initial data and we can gain a big
picture of the dynamics, see Figure 2.1.3.

2.2 Fixed points and stability
In general let us consider the one-dimensional autonomous system x′ = f(x).

As before, we draw the picture of f(x), and then we put arrows on the real line indicating the
sign of x′. The real line with arrows are referred to as the phase portrait. Every point on the graph
is called a phase point. Suppose (x0, f(x0)) is a phase point. It is called a phase point because one
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solution to the equation might pass this point i.e. for some t0 ≥ 0, (x(t0), x′(t0)) = (x0, f(x0)).
Any solution x(t) is called a trajectory.

These are just some names. But using these names gives a geometric flavor of solving DE.
More than that, the geometric way of thinking is important.

The set
{z ∈ R | f(z) = 0}

are called equilibruim points (or fixed points). We know that x(t) ≡ z with z being a equilibruim
point, is a constant solution.

Example 2.2.1. Find all equilibruim points for x′ = x2 − 1, and classify their stability.

Solution. Solving for x2 − 1 = 0 implies that x = ±1 are the two equilibruim points. From the
graph of x2 − 1, we know that x = −1 is stable, and x = 1 is unstable.

A simple criteria is: suppose f(x∗) = 0 and f ′(x∗) > 0, then x∗ is unstable. While if f ′(x∗) <
0, x∗ is stable.

In the above example, we can only say that x = −1 is locally stable (in contrast to globally
stable). Because, solutions starting with initial values < 1 will converge to x = −1 as t → ∞.
But when the initial data is > 1, the corresponding solution diverges to ∞ as t → ∞.

Can you think of an example where there is a globally stable equilibruim point?
Take a look at Example 2.2.2 in the textbook which is about an electrical circuit system.

Example 2.2.2. Use the phase portrait to study

x′ = −(x− 1)5/3(x− 2)2(x− 3).

Predict the asymptotic behavior as t → ∞ of the solution satisfying x(0) = 2.5.

Can you draw the graph of the function in the right-hand side of the above equation?
Sometimes it is hard to portrait the graph for f(x).

Example 2.2.3. Find the stability of all fixed points for x′ = x− cosx.

Solution. We can use computer to draw the graph for x − cosx (which is forbidden during the
exam..). An simpler way is to draw the graph for y = x and y = cos x separately. We plot both
graphs on the same axes and then their difference corresponds to the graph of x−cosx. Their only
one intersection in exactly one point (denoted as x∗) is the fixed point. Notice that x > cosx when
x > x∗ and x < cosx when x < x∗. Therefore x∗ is unstable.

2.3 Population growth
Let N(t) be the population of cells, one species or the number of people who get infectious dis-
ease etc. Then we believe that the growth rate of the population is proportional to N(t) itself,
which implies the simplest model N ′ = rN for some r > 0. After solving the equation, we
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Figure 3: Graph of the population N(t)

get N(t) = N0e
rt where N0 is the initial population. However due to the limited resources, the

interior competition or the predators from outside, the per capita growth rate N ′

N
decreases (to a

negative number) when N becomes sufficiently large. We assume that N ′

N
becomes negative when

N exceeds K which is often called the carrying capacity. We can write the model to be

N ′ = rN(1− N

K
)

which is firstly used to describe the growth of human population by Verhulst in 1838. It is often
called the Logistic model.

This is certainly an autonomous system. Using the phase portrait method, we can find that

1. when N0 ∈ (0, K), the population growths and it converges to K;

2. when N(0) > K, the population decreases to K;

3. when N(0) is very small, N grows exponentially and the growth rate achieves its maximum
at N = K

2
;

4. when N(0) < K
2

, N(t) is increasing as t → ∞. Moreover notice that

N ′′(t) =
d

dt
(f(N(t))) = f ′(N(t))N ′(t) > 0

as long as N(t) < K
2

. Therefore the rate N(t) increases is also increasing, and the graph of
N(t) is convex. While when N(t) becomes greater than K

2
, we have

N ′′(t) =
d

dt
(f(N(t))) = f ′(N(t))N ′(t) < 0

and so the graph of N(t) is then concave;
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5. when N(0) > K
2

, we have

N ′′(t) =
d

dt
(f(N(t))) = f ′(N(t))N ′(t) < 0

for all t > 0, and so the graph of N(t), in this situation, is (increasing) concave for all time.

As an application, let us consider fishing. Suppose the number of fishes near the coast can be
modeled by the Logistic model. People needs to fish to survive and at the same time overfishing
might needs to serious problem like extinction of the fish. The best strategy is keep the population
of the fish to be around K

2
where the growth rate is the largest.

2.4 Linear stability analysis
Suppose x∗ is a fixed point to x′ = f(x). The goal of this section is to have a quantitative measure
of stability (such as the rate of decay to the stable fixed point x∗) by using linearization.

Using Taylor’s expansion we have

f(x∗ + h) = f(x∗) + hf ′(x∗) +O(h2) = hf ′(x∗) +O(h2).

From the equation, f(x∗) = 0 and x′ = h′, we obtain

h′ = hf ′(x∗) +O(h2).

If f ′(x∗) ̸= 0, the O(h2) term is negligible (when h is small) and then the equation becomes

h′ ≈ hf ′(x∗)

which is a linear equation of h, and this is called the linearization (of the original equation) about
x∗.

The solution to the linearized equation H ′ = Hf ′(x∗) with initial data H(0) = ϵ for some
ϵ ∈ R is H(t) = ϵef

′(x∗)t. Therefore when f ′(x∗) > 0, H(t) → ∞ as t → ∞ and when
f ′(x∗) < 0, H(t) → 0 as t → ∞. We conclude that

1. if f ′(x∗) > 0, 0 is a unstable fixed point for H equation,

2. if f ′(x∗) < 0, 0 is a stable fixed point for H equation.

We can assume that h and H are close when both of them are small enough and with the same
initial data. Therefore we have

1. if f ′(x∗) > 0, x∗ is a unstable,

2. if f ′(x∗) < 0, x∗ is a stable.

There is a simple rigorous proof for this: Let us consider the case when f ′(x∗) > 0. Then
when h is small enough, h′

h
≥ f ′(x∗)

2
and so h grows exponentially (for a small time as long as h(t)

is still “small enough”). This indicates that x∗ is unstable.
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Example 2.4.1. Classify the fixed points of the logistic equation.

Solution. The equation is N ′ = rN(1 − N
K
) and f(N) = rN(1 − N

K
). Set f(N) = 0 and we

get N1 = 0, N2 = K are the two fixed points. Then f ′(N) = r − 2rN
K

and so f ′(0) = r and
f ′(K) = −r. Hence N1 is unstable and N2 is stable.

Let us consider the linearized equation about 0 for the logistic model:

H ′ = rH.

Then H(t) = H(0)ert. As explained before, we expect that H(t) and N(t) are close as long as
both of them are close enough to 0. Suppose the initial data H(0) = N(0) are small. In order to
have H(t) small, we need rt to be small. Therefore we say that when t is of order 1

r
, the linearized

equation approximates the original equation well. Notice that here r = f ′(0).
In general cases (x′ = f(x) and x∗ is a fixed point), we define 1

|f ′(x∗)| , if f ′(x∗) is not zero, to
be the characteristic time scale.

“ the new feature is that now we have a measure of how stable a fixed point isthat’s determined
by the magnitude of f(x∗). This magnitude plays the role of an exponential growth or decay rate.
Its reciprocal 1/|f ′(x∗)| is a characteristic time scale; it determines the time required for x(t) to
vary significantly in the neighborhood of x∗. ”

2.5 Existence and uniqueness
The mathematical term well-posed problem stems from a definition given by 20th-century French
mathematician Jacques Hadamard. He believed that mathematical models of physical phenomena
should have the properties that:

1. a solution exists,

2. the solution is unique,

3. the solution’s behaviour changes continuously with the initial conditions.

Let us start with the following example of an initial value problem where the uniqueness of
solutions fails.

Example 2.5.1. Show that the solution to x′ = x1/2 starting from x0 = 0 is NOT unique.

Solution. It is not hard to check that x(t) ≡ 0 is a solution. Also x(t) = 1
4
t2 is a solution.

Moreover “combining” the above two solutions we know that

x(t) :=

 0, if t ∈ [0, a],

1

4
(t− a)2, if t ≥ a

are solutions for any choice of a > 0.
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Using the geometric interpretation for this example, what is happening is: if we place a particle
(phase point) at the origin at time 0, then the particle can stay there for all times, or it can stay there
for time a ≥ 0 and then move according to 1

4
(t− a)2.

The following theorem provides sufficient conditions for existence and uniqueness for x′ =
f(t, x) (in the textbook only the autonomous system is discussed) with some initial data.

Theorem 2.1. Suppose f(t, x) and ∂xf(t, x) are continuous in a rectangle centered at (t0, x0):
{(t, x) | |t − t0| < R, |x − x0| < R} for some R > 0. Then there exists τ > 0 (possible smaller
than R) such that the initial value problem

x′ = f(t, x), x(t0) = x0

has a solution x(t) on some time interval (t0 − τ, t0 + τ) and the solution is unique.

We skip the proof. (Some references for the proof are given in the textbook. You can also
google “Picard iteration method” to find some references.)

The next example indicates that even the conditions in Theorem 2.1 hold (actually even f
is smooth in the whole domain), there’s no guarantee that solutions exist forever. Think about
whether this contradicts with Theorem 2.1. If not, why?

Example 2.5.2. Solve x′ = 1 + x2, x(0) = x0 where x0 is a real number.

Solution. This is a separable differential equation. By integration, we are able to find out an
explicit solution:

x = tan(t+ C).

Using the initial data we get C = tan−1 x0 and C is a number from −π
2

to π
2
. Later we will still

denote C as tan−1 x0 below.
Now we claim that this solution only exists for a finite time. Indeed, the function

tan(t+ C)

is only a continuous function for t ∈ (−C − π
2
,−C + π

2
), and as t → ±π

2
, the solution → ±∞.

Thus outside of the time interval (−C− π
2
,−C+ π

2
), there is no solution to the initial value problem

for x(0) = x0.

In the above example the solution reaches infinity in finite time. This phenomenon is called
(finite time) blow-up. As the name suggests, it is of physical relevance in models of combustion
and other runaway processes.

Later we will only deal with smooth vector fields (f = f(x)) and we will not worry about
issues of existence and uniqueness.
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2.6 Impossibility of oscillations
Consider the system x′ = f(x). Fixed points dominate the dynamics of first-order systems. In all
our examples so far, all trajectories either approached a fixed point, or diverged to ±∞.

We claim that the trajectories are forced to increase or decrease monotonically, or remain con-
stant. To put it more geometrically, the phase point never reverses direction. To put it in another
way, a solution will monotonically converge to a fixed point or to ±∞. There is no oscillations
and no periodic solutions.

This can be proved by the existence and uniqueness theorem.

Proof. (of no oscillations.) Suppose for contradiction that a solution x(t) to x′ = f(x) with smooth
f is such that x(t1) = x(t2) = a and a is not a fixed point. Without loss of generality, suppose
x′(t1) > 0 (it cannot be 0 because otherwise a is a fixed point), then x(t) is increasing. If x(t)
is always increasing for t > t1, a cannot be reached again. Therefore x′(t) have to be 0 at some
t > t1. While this is again impossible, because if x′(t3) = 0 = f(x(t3)) for some t3 > t1,
x ≡ x(t3) is then a solution, which contradicts with the uniqueness theorem.

Similarly we can show that two trajectories of an autonomous system cannot intersect by using
the uniqueness theorem. Can you prove it?

2.7 Potentials
There is another way to visualize the dynamics of the first-order system x′ = f(x), based on the
physical idea of potential energy.

Suppose a particle has to slog through a think layer of goo. By physics (Newton’s law)

mx′′ + bx′ = F (x)

where m is the mass, b is the damping coefficient, and f is the force. Suppose the system is over
damped in the sense that m << F (x)

b
=: f(x). In such a case we get x′ = f(x). The (re-scaled)

force term f(x) is determined by the shape of the goo. If it has a large slope, the force is large,
and if it is flat, the force is small. Therefore we have f(x) = −dV (x)

dx
. The minus sign is due to the

pointing direction. This function V will be called the potential function.
We claim that, under this interpretation, along any trajectories (solutions) to the system, the

potential decreases. The proof for this is one line:

dV (x(t))

dt
=

dV (x)

dx

dx

dt
= −(V ′(x(t)))2 ≤ 0.

Also f(x) = 0 corresponds to dV
dx

= 0. So fixed points are local extreme points of V (x). Actually
we have

• if x0 is a local minimum point of V , it is a stable fixed point;
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• if x0 is a local maximum of V , it is a unstable fixed point.

Can you prove this?

Example 2.7.1. For the system x′ = −x, the potential V (x) = 1
2
x2 (any functions 1

2
x2 + C for

C ∈ R are correct potential functions). The equilibrium point is x = 0, and it is stable.
For the system x′ = x− x3, the potential can be V (x) = −x2

2
+ x4

4
. x = ±1 are the two stable

equilibrium points, x = 0 is the only unstable equilibrium point.

3 Bifurcations
Bifurcation is the phenomena of qualitative changes in the structure of a given family of solutions
to a continuous family of differential equations.

3.1 Saddle-node bifurcation
Let us consider the following continuous family of first-order autonomous system with parameter
r ∈ R:

x′ = r + x2. (1)

When r is negative, there are two fixed points, one stable and one unstable. As r approaches 0
from below, the parabola moves up and the two fixed points move toward each other. When r = 0,
the fixed points coalesce into a half-stable fixed point at x∗ = 0. As soon as r → 0, the fixed point
vanishes and now there are no fixed points at all.

In this example, we say that a bifurcation occurred at r = 0, since the solutions to the equation
exhibit significantly different behaviour for r < 0 and r > 0 (different number of fixed points and
different stability).

Now we try to depict the bifurcation by plotting the fixed points as a function of r (this makes
sense because we know that fixed points alone capture the main property of the vector fields or the
equation).

To do so we first depict the phase portraits for different r. And then we think of r as an
independent variable, and for each r, we plot the fixed points and we get a curve of fixed points
(as a function of r). To distinguish between stable and unstable fixed points, we use a solid line for
stable points and a broken line for unstable ones. This picture is called the bifurcation diagram of
(1). Bifurcation diagram of this shape will be called the saddle-node bifurcation or fold bifurcation.
They are used to describe the situation that two fixed points of a dynamical system collide and
annihilate each other.

Another example is
x′ = r − x2.

When r > 0 there are two fixed points (one is stable and the other is unstable, check this!); when
r = 0, we have only one half-stable fixed point; and when r becomes negative, there is no fixed
point.
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Example 3.1.1. Show that the first-order system x′ = r − x − e−x undergoes a saddle-node
bifurcation as r is varied, and find the value of r at the bifurcation point.

Solution. Let f(x, r) = r − x− e−x. The problem is to find the root(s) of f(x, r) = 0 for various
r.

We adopt a geometric approach. We plot r − x and e−x on the same picture. The intersections
of the two curves represents the root(s) to f(·, r) = 0 for fixed r. This picture also allows us to
read off the direction of flow on the x-axis: the flow is to the right where the line lies above the
curve, since r − x > e−x and therefore x′ > 0. Hence, the fixed point on the right is stable, and
the one on the left is unstable.

Then we start decreasing the parameter r. The line r − x slides down and the fixed points
approach each other. At some critical value r = rc (we know rc exists and we will find out its
value below), the line becomes tangent to the curve and the fixed points coalesce in a saddle-node
bifurcation. For r below this critical value, the line lies below the curve and there are no fixed
points.

Now we solve for the value of rc. Since rc − x and e−x attaches each other at one point. Then
at the point, the slope has to be the same. We get two equations from this: at the attaching point
(say x),

rc − x = e−x,
d

dx
(rc − x) =

d

dx
(e−x).

Solving the two equations, we find that the bifurcation point is rc = 1.

It can be deduced easily from the above that

f(x, r) = (r − rc)− (x− z)2 and f(x, r) = (r − rc) + (x− z)2

exhibit Saddle-node bifurcation (occurred at r = rc, x = z), and they will be called the nor-
mal forms for saddle-node bifurcation. More generally, as before, we can use Taylor’s expansion
characterize the functions and fixed points that have saddle-node bifurcation.

Taylor’s expansion for multi-variables (x, a ∈ R2):

f(x) = f(a) +Df(a) · (x− a) +
1

2
(x− a)H(f)(a) · (x− a) +O(∥x− a∥3).

Here Df(a) := (fx1(a), fx2(a)) is the gradient of f at x = a, and

H(f)(a) =

(
fx1x1(a) fx1x2(a)
fx1x2(a) fx2x2(a)

)
.

This matrix involving second derivatives of f is called the Hessian of f evaluated at a.
We regard f as a function of both x and r, and examine the behavior of x′ = f(x, r) near the

bifurcation at x = z and r = rc. Applying the Taylor’s expansion to f(x, r) at point (x, r) =
(z, rc), we get

f(x, r) = f(z, rc) + fx(z, rc)(x− z) + fr(z, rc)(r − rc) +
1

2
fxx(z, rc)(x− z)2

+O(∥x− z∥∥r − rc∥+ ∥r − rc∥2 + ∥(x− z, r − rc)∥3).
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Now if f(z, rc) = 0 (z is a fixed point for f(·, rc)) and fx(z, rc) = 0 (rc is critical), we find that

f(x, r) = a(r − rc) + b(x− z)2 + ...

where a = fr(z, rc) and b = 1
2
fxx(z, rc). Assuming a, b ̸= 0, we get the same expressions as the

prototypical examples (at least for the first several terms of the Taylor’s expansion of f , and the
first several terms approximate the original f well near (x, r) = (z, rc)).

Therefore we draw the conclusion: If f = f(x, r) satisfies for some (z, rc),

1. f(z, rc) = 0, and fx(z, rc) = 0,

2. fr(z, rc) ̸= 0, and fxx(z, rc) ≠ 0,

then x′ = f(x, r) exhibits Saddle-node bifurcation at (x, r) = (z, rc).

3.2 Transcritical bifurcation
The normal form for a transcritical bifurcation is

x′ = rx− x2.

Let us figure out how the fixed points changes as we change r from a negative number to a positive
number.

By using the phase portrait method, when r < 0, we have two fixed points: x = 0 which is
stable and x = −r which is unstable.

When r = 0, there is only one half-stable fixed point x = 0.
And when r > 0, there are two fixed points again: x = 0 which is unstable and x = r which is

stable.
We can also draw the bifurcation diagram: figure 3.2.2 in the textbook. We see that 0 is always

a fixed point. But as r varies, x = 0 interchanges its stability with the other fixed point.

Example 3.2.1. A typical example could be the consumer-producer problem where the consump-
tion is proportional to the (quantity of) resource.

x′ = rx(1− x)− px

where rx(1 − x) is the logistic equation of resource growth; and px is the consumption, propor-
tional to the resource.

The next example is from the textbook:

Example 3.2.2. Show that the first-order system x′ = x(1 − x2) − a(1 − e−bx) undergoes a
transcritical bifurcation at x = 0 when the parameters a, b satisfy ab = 1.
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Proof. Let us only consider the case a, b > 0. Let us call the right-hand side of the equation f(x).
By the Taylor’s expansion,

f(x) = (1− ab)x+
1

2
ab2 x2 + x3g(x)

where g(x) is a continuous function depending also continuously on a, b. We see that x = 0 is
always a fixed point.

When ab = 1, x = 0 is a half-stable fixed point.
When ab > 1, notice that

f(x) =
1

2
ab2x(x− 2(ab− 1)

ab2
+

2x2g(x)

ab2
).

Hence for |ab − 1| small enough, x ≈ 2(ab−1)
ab2

is a fixed point and (from the graph of the vector
filed of f(x) near 0) it is unstable. Also we can see that x = 0 is stable.

Similarly it is not hard to derive that when ab < 1, for |ab− 1| small enough, x ≈ 2(ab−1)
ab2

is a
stable fixed point and x = 0 is unstable.

Hence we can conclude that the equation undergoes a transcritical bifurcation.

3.3 Laser threshold
In this section we look at one scientific example: a simplified model for a laser.

It is known that when an external energy source is used to pump the atoms out of their ground
states, laser is created from a process that photons stimulate excited atoms to emit additional pho-
tons. Let us use n(t) to denote the number of photons in the laser field and N(t) to denote the
number of excited atoms. Since photons and atoms meet at random, the gaining rate of n(t) is
expected to be proportional to n(t)N(t). We also have a lose term which models the escape of
photons through the endfaces of the laser. Therefore we have

n′ = GnN − kn

where G, k > 0 are parameters. We also need an equation to relate N,n. Assume for simplicity
that the excited atoms is reduced by the laser process in a linear way:

N(t) = N(0)− αn(t)

where N(0) > 0 comes from the pump, and α > 0 is some rate. Putting the equations together
gives

n′ = Gn(N(0)− αn)− kn = (GN(0)− k)n− (αG)n2.

Now let us analyze the equation by classifying the fixed points. When N(0) < k/G, the fixed
point at n = 0 is stable. This means that there is no stimulated emission, and eventually we cannot
see the laser. As the pump strength N(0) is increased, the system undergoes a transcritical bifur-
cation when N(0) = k/G, and n = 0 is a half-stable fixed point. When N(0) further increases, a
stable fixed point occurs. Thus N(0) = k/G can be interpreted as the laser threshold in this model.
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Next let us look at a improved model of a laser:

n′ = GnN − kn,

N ′ = −GnN − fN + p.

The physical background is given in Exercise 3.3.1 in the textbook.
Suppose that N relaxes much more rapidly than n and assume that N ′ = 0. Then the two-

dimensional system becomes a one-dimensional equation:

n′ =
Gnp

Gn+ f
− kn =: F (n).

Sending F (n) = 0, we find that n = 0 and n = p
k
− f

G
are two fixed points.

If p > fk
G

, there is only one fixed point n = 0 in the non-negative region. In this case since
F (n) < 0 for n > 0, n = 0 is an unstable fixed point. When p = fk

G
, n = 0 is half-stable and

when p < fk
G

, the other fixed point n = p
k
− f

G
> 0 and it is unstable. In this case n = 0 becomes

stable. We can therefore conclude that the equation undergoes a transcritical bifurcation.

3.4 Pitchfork Bifurcation
In this section we discuss a third kind of bifurcation, the so-called pitchfork bifurcation.

Again we discuss it by looking at a prototypical type problem:

x′ = rx− x3.

Before analyzing the phase portrait, let us mention a property of the equation: invariant under the
change of variables x → −x. This means that if x(t) is a solution, then y(t) := −x(t) is also a
solution, because

y′ = −x′ = −rx+ x3 = ry − y3.

We used that the vector field is an odd function here. This invariant property tells that if x = a is
a fixed point and so is x = −a. Moreover, if x = a is a stable fixed point and so is x = −a – the
stability are the same as well.

When r < 0, the origin is the only fixed point, and it is stable. The linearized equation is
x′ = rx with solutions of the form x(t) = x0e

rt.
When r = 0, the origin is still the only fixed point which is stable. But now solutions no longer

decay exponentially fast, instead the decay is a much slower algebraic function of time. Actually,
we can compute the explicit form of solutions: since x′ = −x3, we get

x(t) = (
1

2
t+ C)−

1
2 .

This lethargic decay is called critical slowing down in the physics literature.
Finally, when r > 0 the origin has become unstable. Two new stable fixed points appear on

either side of the origin, symmetrically located at x = ±
√
r.
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The corresponding bifurcation diagram is given in Figure 3.4.2. This bifurcation is called a
Supercritical Pitchfork Bifurcation.

Next we introduce the Subcritical Pitchfork Bifurcation. The prototypical equation is:

x′ = rx+ x3.

Comparing to the supercritical case discussed in the above the cubic term is negative which then
has a stabilizing effect: it acts as a restoring force that pulls x(t) back toward x = 0. While here
the effect is opposite.

Now we study the phase portrait. When r > 0, the origin is the only fixed point, and it is
unstable. When r = 0, the origin is still the only fixed point which is unstable. When r > 0, there
are three fixed points: the origin is stable, x = ±

√
−r are two unstable fixed points. Figure 3.4.6

in the textbook shows the bifurcation diagram.

Example 3.4.1. Let us consider
x′ = rx+ x3 − x5.

We can imagine before any computations that since near x = 0, x5 is of very low order, the
bifurcation occurs at x = 0, r = 0 is a subcritical pitchfork bifurcation. The phase portrait and
bifurcation diagram near these values are the same as those of x′ = rx+ x3.

Now let us consider for x that are away from 0 (and we will see that the x5 term plays an
important role). Let us compute the fixed points for different r below.

Notice that rx + x3 − x5 = 0 is a polynomial of degree 5 and so there are five roots: x =

0,±
√

1±
√
1+4r
2

. Not all roots are fixed points because some of them can be of complex value.

When r > 0, there are three fixed points (three roots are real): x = 0,±
√

1+
√
1+4r
2

. x = 0 is
unstable and the other two are stable. When r ∈ (−1

4
, 0), we have five fixed points. When r < −1

4
,

0 is the only fixed point. They are

x1 =

√
1 +

√
1 + 4r

2
, x2 = ±

√
1−

√
1 + 4r

2
, x3 = −x1, x4 = −x1.

We can also see that 0, x1, x4 are stable fixed points and x2, x3 are unstable by the graph of f . The
bifurcation at r = −1

4
is a saddle-node bifurcation, in which stable and unstable fixed points are

born as r is increased.
With the knowledge of these fixed points and their stability, we can certainly analyze the long

time behaviour of solutions as we did in section 2. Please take a look at the textbook page 60 –
page 61.

3.5 Overdamped bead on a rotating hoop
Let us use this section to analyze a classic problem from first-year physics, the motion of bead on
a rotating hoop. The story is: A bead of mass m slides along a wire hoop of radius r. The hoop is
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constrained to rotate at a constant angular velocity ω about its vertical axis. Furthermore, suppose
that there’s a frictional force on the bead that opposes its motion. The friction is due to viscous
damping.

Let me write down the equation below and then I will briefly explain how it comes from. The
equation is

mrϕ′′ = −bϕ′ −mg sinϕ+mrω2 sinϕ cosϕ,

where ϕ is the angle between the bead and the downward vertical direction; rϕ′′ is the tangen-
tial acceleration; mg represents the gravitational force; and bϕ′ is a tangential damping force.
The term mg sinϕ comes from the gravity force projecting to the tangential direction. The term
mrω2 sinϕ cosϕ is the projection of the sideways centrifugal force mρω2 with ρ = r sinϕ into the
tangential direction.

Let us neglect the second order term. (Cautious! When doing research, it is OK to neglect
terms that are minor, but it is not OK to neglect a term that makes things hard. We will explain
in the end of this section that when the system is overdamped, such approximation makes sense.)
Then the equation becomes a first order differential equation:

bϕ′ = mg sinϕ(
rω2

g
cosϕ− 1).

We need to keep in mind that, for this equation, the domain for the independent variable ϕ is
(−π, π] (and if we think of −π the same as π, the domain is a circle). From this, we see that all the
ϕ’s satisfying sinϕ = 0 are fixed points. Then we get ϕ = 0 (the bottom of the hoop), and ϕ = π
(the top). The more interesting result is that if

γ :=
rω2

g
> 1

there are more fixed points i.e. ϕ’s satisfying cosϕ = g
rω2 = γ−1.

Think about what does these fixed points correspond to in the physical model? What does the
assumption γ > 1 correspond to in the physical model?

Overall when γ ≤ 1, there are two fixed points (think about what happened when γ = 1?).
Thus when γ > 1, we have four fixed points: ϕ = 0, π,± arccos(γ−1). Since the domain for ϕ is a
circle, we have the following phase portrait (the direction of arrows are obtained from the sign of
the vector field as before). Also it is worth mentioning that as γ → ∞, ± arccos(γ−1) converge to
±π/2.

We can also plot the fixed points as a graph of the parameter γ to obtain the bifurcation diagram
(see Figure 3.5.6 in the textbook). We now see that a supercritical pitchfork bifurcation occurs at
γ = 1.

In terms of the bead’s motion, we see that when γ < 1 (the hoop is rotating slowly), the bead
slides down to the bottom and stays there. But if γ > 1 (the hoop is spinning fast), the bead is
therefore pushed up the hoop until gravity balances the centrifugal force; this balance occurs at
one of the two fixed points. Which of these two fixed points is actually selected depends on the
initial disturbance. Even though the two fixed points are entirely symmetrical, an asymmetry in
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the initial conditions will lead to one of them being chosen – physicists sometimes refer to these
as symmetry-broken solutions.

Now we need to address the question: When is it valid to neglect the second order term. To
answer the question, let us try to rewrite the equation into a simpler form (try to combine the
“unimportant” constants). Let us change the variable: τ = t

T
where T > 0 is a characteristic time

scale to be chosen later. We have
ϕ′ =

dϕ

dτ

dτ

dt
=

1

T

dϕ

dτ
and

ϕ′′ =
d

dτ
(
1

T

dϕ

dτ
)
dτ

dt
=

1

T 2

d2ϕ

dτ 2
.

Using the τ variable, the equation becomes

r

gT 2

d2ϕ

dτ 2
= − b

mgT

dϕ

dτ
− sinϕ+

rω2

g
sinϕ cosϕ.

Therefore in order to neglect the second order term and preserve the first order term, we need to
pick T = b

mg
, and require the coefficient of the second order term to be small:

r

g
(
mg

b
)2 << 1 ⇐⇒ b2 >> m2gr.

Since b is the damping coefficient and m is the mass, this can be interpreted as saying that the
damping is very strong, or that the mass is very small. Setting ϵ = r

g
(mg

b
)2, the equation

ϵ
d2ϕ

dτ 2
= −dϕ

dτ
− sinϕ+

rω2

g
sinϕ cosϕ

is said to be in the dimensionless form. Generally, mathematician are more willing to deal with an
equation in its dimensionless form, instead of the original one from physics.

3.6 Imperfect Bifurcations
In this section we discuss imperfect bifurcations. Here by “imperfect” we mean that, compared
to pitchfork bifurcations where we have a symmetry (the vector field is an odd function), the
symmetry is lost.
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We look at the following example:

x′ = h+ rx− x3,

where h, r are two parameters. We refer to h as an imperfection parameter (think about why?).
If h = 0, this is the normal for a supercritical pitchfork bifurcation. However here we are more
interested for h ̸= 0.

One obstacle of analyzing this equation is that there are two parameters. One idea is to plot the
graphs of y1 = rx− x3 and y2 = −h on the same axes, and look for intersections. Let us fix r first
and vary h.

When r ≤ 0, the graph of y1 is monotonically decreasing, and so it intersects the horizontal line
y2 in exactly one point. When r > 0, the number of intersection points depend on the parameters.
As we sliding down the horizontal line, the number of fixed points changes from 1 to 2, to 3 and
then to 2, and to 1 again. The critical cases are when y1, y2 attach tangentially at one point, and it
happens at the place where y1 reaches its local maximum and local minimum (see Figure 3.6.1 b
in the textbook). Thus for the fixed r, saddle-node bifurcation happens twice in the system.

It is known that to find out the local extreme points, we solve for d
dx
(rx− x3) = 0. We get

x = ±
√
r/3.

Let us call the local maximum hc(r) and, by symmetry, the local minimum is −hc(r). Then
hc(r) =

2r
3

√
r/3. So for h = ±hc(r), there are two fixed points and bifurcations occur. Therefore,

for possibly different positive r, the curves h = ±hc(r) are called the bifurcation curves. We
can plot the bifurcation curves in an r − h coordinates (see Figure 3.6.2 for the stability diagram)
(think about how we obtain the stability of fixed points). In the picture we see a cusp point at
(r, h) = (0, 0).

Next, for any fixed r ≤ 0 and r > 0, we can plot the bifurcation diagrams for the parameter h.
When r ≤ 0, there is only one fixed point: x∗ such that h + rx∗ − x3

∗ = 0. When r > 0, we plot
curves (h, x∗) subjected to h = −rx∗+x3

∗ (and so the graph is the same as the graph of the inverse
function of −rx∗ + x3

∗).
Another way to think of the problem is to fix h first and vary the r. We can again draw some

bifurcation diagrams. When h = 0 we have the usual pitchfork diagram. Let us only discuss what
happens when h > 0. In this case when r < 0, we have one fixed points for sure. While when
h > 0, r > 0, we plot (r, x∗) such that r = x2

∗ − h
x∗

. One interesting observation is that the graph
in the bifurcation diagram (h− x) is smooth when h ̸= 0 and it is a pitchfork when h = 0!

Of course we can also try to plot the fixed points in an h− r − x coordinates (in R3). But this
is hard to plot and visualize.

3.7 Insect outbreak
We are going to look at a biological model for the sudden outbreak of an insect called the spruce
budworm. This insect is a serious pest in eastern Canada, where it attacks the leaves of the balsam
fir tree. When an outbreak occurs, the budworms can defoliate and kill most of the fir trees in the
forest in about four years.
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Let us skip the modeling part and present the equation: let N be the population of the budworm,

N ′ = RN(1− N

K
)− bN2

a2 +N2

where (the first term in the RHS is discussed) the second term represents the death rate due to
predation, chiefly by birds.

First let us try to find out the dimensionless formulation (which we had done once before for a
different equation). In order to simplify the predation term, let N = ax and diving the equation by
b:

a

b

dx

dt
=

Ra

b
x(1− ax

K
)− x2

1 + x2
.

Then to remove the coefficient in front of the differential term, we let τ = b
a
t. Then

dx

dτ
=

Ra

b
x(1− ax

K
)− x2

1 + x2
= rx(1− x

k
)− x2

1 + x2
.

where we set
r :=

Ra

b
, k :=

K

a
.

Then dx
dτ

= rx(1− x
k
)− x2

1+x2 with some r, k > 0 is the desired dimensionless form equation.
We look for the fixed points by solving r(1− x

k
) = x2

1+x2 . We plot the functions on the left hand
side and on the right hand side of the qualities on the same axes. From the picture (Figure 3.7.2),
when k is sufficiently small, there are always only one intersection (for all k > 0 small and r > 0).
Let us call this case 1. Next when k is large there can be one, two, three fixed points, and we call
this case 2. Actually we can determine a critical value of k0 such that if k < k0 corresponds to case
1 and k > k0 corresponds to case 2. Think about how to find k0?

Now suppose we are in the region of k > k0 and we fix one such k. Then as r increases from 0
there are mainly three regions (if we do not count the critical case): 1 intersection with y = x2

1+x2 ,
3 intersections, and no intersection. So we have saddle-node bifurcations when the line intersects
the curve tangentially (the critical case).

To find the place where tangential intersections occur, we solve for the following two equations:

r(1− x

k
) =

x

1 + x2

and
d

dx

(
r(1− x

k
)
)
=

d

dx

(
x

1 + x2

)
.

Theoretically two equations involving three variables (r, k, x), after eliminating x we get a relation
between r and k which then define the stability diagram (figure 3.7.5).

Finally let us take a look at k > k0. In this region we have three fixed points and suppose
that they are x1, x2, x3 such that x3 > x2 > x1 > 0. And we can plot the phase portrait. We see
that x1, x3 are stable and x2 is unstable. In biology, x1 is called the refuge level of the budworm
population, while x3 is called the outbreak level (the level where there are too many budworms).
We view x2 as a threshold since if the population is below x2 at a time, the population converges
to x1; and if the population is above x2, the population converges to x3.
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4 Flows on the circle
In this section we still consider first order autonomous differential equations, while the novelty is
that the range of the unknown variable is no longer a subset of R but a circle. This will be a short
section.

The equation is
θ′ = f(θ)

where we can interpret θ as angles. We will discuss the dynamics of some simple oscillators, and
then show that these equations arise in a wide variety of applications.

4.1 Examples and definitions
Example 4.1.1. Sketch the vector field on the circle corresponding to θ′ = sin θ.

Example 4.1.2. Explain why θ′ = θ cannot be regarded as a vector field on the circle, for θ in the
range −∞ < θ < ∞.

Solution. We cannot regard f(θ) = θ with range (−∞,∞) as a function on a circle because the
value is not uniquely defined. On a circle, θ = 0, 2π, 4π... are all denoting the same point, and so
we need

f(0) = f(2π) = f(4π) = ...

If we try to avoid this non-uniqueness by restricting the range of f(θ) to the range (−π, π], then
the velocity vector jumps discontinuously at the point corresponding to θ = π. Try as we might,
there is no way to consider θ′ = θ a smooth vector field on the entire circle.

In practice, θ′ = f(θ) for some real-valued, 2π-periodic function f is a well-defined differential
equation on the circle. So through tout the section, we will mainly consider smooth 2π−periodic
functions as the vector fields.

4.2 Uniform oscillator
Recall that when we consider flows of a given vector field on the real line or an open subset of the
real line, periodic solutions is not possible. However for solutions on a circle, it is common. The
simplest example can be:

θ′ = ω

where ω > 0 is a constant. The solution is θ(t) = ωt+ θ0 where θ0 is the initial data. This solution
is periodic, in the sense that θ(t) changes by 2π, and therefore returns to the same point on the
circle, after a time T = 2π

ω
. We call T the period of the oscillation.

Let us take a look at Example 4.2.1.

Example 4.2.1. Two joggers, Ada and Bob, are running at a steady pace around a circular track.
It takes Ada T1 seconds to run once around the track, whereas it takes Bob T2 > T1 seconds.
Of course, Ada will periodically overtake Bob; how long does it take for Ada to lap Bob once,
assuming that they start together?
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Solution. Let θ1(t) be Ada’s position on the track, and let θ2(t) be Bob’s. Then we have for
i = 1, 2,

θ′i = ωi :=
2π

Ti

.

Ada laps Bob once, assuming that they start together, is the same as θ1(0) = θ2(0) and T is the
smallest positive time such that

θ1(T )− θ2(T ) = 2π.

(θ1 − θ2 is often called the phase difference.) From the equation we get

θ1(t)− θ2(t) = (ω1 − ω2)t

and so
T =

2π

ω1 − ω2

= (
1

T1

− 1

T2

)−1.

4.3 Nonuniform oscillator
θ′ = ω is called uniform oscillator. In this section we consider the following nonuniform oscillator
(a ̸= 0)

θ′ = ω − a sin θ.

The equation arises in many different branches of science and engineering like: Electronics (phase-
locked loops), Biology (oscillating neurons, firefly flashing rhythm, human sleep-wake cycle), and
Mechanics (Overdamped pendulum driven by a constant torque).

Let us assume that ω ≥ 0, a > 0. We can plot the vector field on (−π, π] for different values
of a (see Figure 4.3.2). When a is less than ω, since the vector field is strictly positive, we obtain
an oscillator. As can be seen from the picture, θ = π

2
is a bottleneck: θ(t) increases slowly around

the point. And we can imagine that when a < ω is very close to ω, it takes a very long time for the
solution to go over the bottleneck and the periodicity of solutions is very large.

Next when a = ω, we see a half-stable fixed point has been born in a saddle-node bifurcation
at π/2, and so the system stops oscillating. When a > ω, the half-stable fixed point splits into a
stable and unstable fixed point. All trajectories are attracted to the stable fixed point as t → ∞.

For a < ω, we know that solutions are periodic. One natural question is what is the periodicity?
Suppose the periodicity of θ is T . Then, assuming that θ(0) = 0, we have 2π = θ(T ) which implies
that

T = θ−1(2π) =

∫ 2π

0

dθ−1(s)

ds
ds.

(Here θ−1 is well-defined because θ is a strictly increasing function when viewed as a function on
a real line.) Since θ−1(s) = t with s = θ(t), chain rule yields

dθ−1(s)

ds
=

dθ−1(θ(t))

dt

dt

ds
= 1×

(
ds

dt

)−1

=

(
dθ(t)

dt

)−1

=
1

ω − a sin θ
.
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Therefore

T =

∫ 2π

0

1

ω − a sin θ
dθ =

2π√
ω2 − a2

.

Let me briefly recall for you how to do this integration problem in the last equality in the above
(this is basically a problem of Math 20). Let u = tan θ

2
, and then

du

dθ
=

1

2 cos2(θ/2)
, sin θ = 2 sin(θ/2) cos(θ/2).

Therefore the integration can be rewritten as∫ 2π

0

1

ω − a sin θ
dθ =

∫ π

−π

1

ω − a sin θ
dθ

=

∫
R

2 cos2(θ/2)

ω − 2a sin(θ/2) cos(θ/2)
du

=

∫
R

2 cos2(θ/2)

ω(sin2(θ/2) + cos2(θ/2))− 2a sin(θ/2) cos(θ/2)
du

=

∫
R

2

ω(1 + u2)− 2au
du

=

∫
R

2

(
√
ωu− a/

√
ω)2 + (ω2 − a2)/ω

du.

Recall the formula:
∫

1
a2+x2dx = a−1 tan−1(x/a) + C. We obtain∫ 2π

0

1

ω − a sin θ
dθ = 2(

√
ω)−1

∫
R

1

v2 + (ω2 − a2)/ω
dv

= 2(
√
ω)−1((ω2 − a2)/ω)−1/2π =

2π√
ω2 − a2

.

Example 4.3.1. Estimate the period of θ′ = ω − a sin θ in the limit a → ω−.

Solution. From the exact formula of T , we can estimate the order of T → ∞ as a → ω−:

T =
2π√

ω2 − a2
=

2π√
ω + a

(ω − a)−
1
2 ≈ π

√
2/ω(ω − a)−

1
2

when a is close to ω.
Next we use the normal form method instead of the exact result to estimate the period. We use

a Taylor expansion about θ = π/2, where the bottleneck occurs. Let ϕ = θ−π/2 and so ϕ is small
(dealing with ϕ is more convenient). Then we have

ϕ′ = ω − sin(ϕ+ π/2) = ω − a cosϕ = ω − a+
1

2
aϕ2...
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Then we might solve the following equation to approximate the original equation:

x′ = (ω − a) +
1

2
ax2.

Separating the variables we get dx
(ω−a)+ax2/2

= dt. Thus the periodicity

T ≈
∫ ∞

−∞

dx

(ω − a) + 1
2
ax2

= (
1

2
a(ω − a))−

1
2π ≈ (π

√
2/ω)(ω − a)−

1
2 .

(We used the limits of the integration −∞, ∞ here. It is not too different from −1 to 1 since the
integrand is large when x is large. And here we only need an order of T → ∞ as ϕ → 0.)

4.4 Overdamped pendulum
We now consider a simple mechanical example of a nonuniform oscillator: an overdamped pendu-
lum driven by a constant torque. Let θ denote the angle between the pendulum and the downward
vertical direction, and suppose that θ increases counterclockwise. Then Newton’s law yields

mL2θ′′ + bθ′ +mgL sin θ = Γ

where m > 0 is the mass and L > 0 is the length of the pendulum, b > 0 is a viscous damping
constant, g > 0 is the acceleration due to gravity, and Γ > 0 is a constant applied torque. Similarly
as before, when considering the case that b is extremely large (overdamped), the equation can be
approximated by the following first order equation

bθ′ +mgL sin θ = Γ.

As done several times before, we first simplify the equation to the dimensionless form (and I
skip the details):

θ′ = γ − sin θ

where θ′ := dθ
dτ

, τ := mgL
b
t, and γ = Γ

mgL
.

For this equation, if γ > 1, then the vector field is always positive which implies that the
applied torque is strong enough to overturn the pendulum continually.

When γ < 1, we have two fixed points. It is clear that the lower of the two equilibrium positions
is the stable, and the other is unstable.

When θ = 1, there is a fixed point. Unlike in the case of flows on the real-line, where we call
it half-stable, here a better name is asymptotically stable fixed point because even though a flow
might not converges to it instantly but it will converge to it eventually.

Finally, when γ = 0, the applied torque vanishes and there is an unstable equilibrium at the top
(inverted pendulum) and a stable equilibrium at the bottom.
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4.5 Fireflies
In this section we discuss a very interesting example of Fireflies’ synchronization phenomena in
nature. In some parts of southeast Asia, thousands of male fireflies gather in trees at night and flash
on and off in unison.

Suppose that θ(t) is the phase of one firefly’s flashing rhythm, where θ = 0 corresponds to
the instant when a flash is emitted. When the firefly is alone, θ goes around the circle cycle at a
constant frequency ω, and so θ′ = ω. It is known that for different fireflies, the ω is different. So
what is spectacular is that when thousands of fireflies are together, they are synchronized in the
sense that they are flashing with the same frequency! The key is that the fireflies influence each
other, and one interesting question is how the influence happens?

Hanson (1978) studied this effect experimentally, by periodically flashing a light at a firefly
and watching it try to synchronize. For a range of periods close to the firefly’s natural period,
the firefly was able to match its frequency to the periodic stimulus (the range of Entrainment).
However, if the stimulus was too fast or too slow, the firefly could not keep up –then a kind of beat
phenomenon occurred. But Hanson found that the phase difference increased slowly during part of
the beat cycle, as the firefly struggled in vain to synchronize, and then it increased rapidly through
2π after which the firefly tried again on the next beat cycle. This process is called phase drift.

Now suppose that the phase Θ of periodic stimulus satisfies

Θ′ = Ω.

We model the firefly’s response to this stimulus as follows: If the stimulus is ahead in the cycle,
then we assume that the firefly speeds up in an attempt to synchronize. Conversely, the firefly
slows down if it’s flashing too early. A simple model that incorporates these assumptions is

θ′ = ω + A sin(Θ− θ)

where A > 0 is the resetting strength measuring the firefly’s ability to modify its instantaneous
frequency. For example, if Θ is ahead of θ (i.e. 0 < Θ− θ < π) the firefly speeds up (θ′ > ω).

In order to analyze the dynamics of θ, we look at the phase difference ϕ = Θ− θ, which then
satisfies

ϕ′ = Ω− ω − A sinϕ.

Here A > 0 is called the resetting strength.
By doing the following substitution

τ := At, µ = (Ω− ω)/A,

we get a dimensionless equation
ϕ′ = µ− sinϕ,

where ϕ′ = dϕ
dτ

. The dimensionless parameter µ is a measure of the frequency difference, relative
to the resetting strength. We have the nonuniform oscillator equation.

When µ = 0, 0 is a stable fixed point. All trajectories flow toward ϕ = 0. Thus the firefly and
the stimulus flash simultaneously eventually. And when 0 < µ < 1, there are two positive fixed
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points. All trajectories are still attracted to the stable one which is now positive. Since the phase
difference approaches a constant, one says that the firefly’s rhythm is phase-locked to the stimulus.
Similarly when −1 < µ < 0, the phase difference approaches a constant (which is negative now),
and the firefly’s rhythm is phase-locked to the stimulus.

For µ > 1 or µ < −1 there is no fixed point. When µ > 1, the phase difference ϕ increases
indefinitely and periodically. Notice that the phases don’t separate at a uniform rate, in qualitative
agreement with the experiments of Hanson (1978): ϕ increases most slowly when it passes under
the minimum of the sine wave at ϕ = π/2, and most rapidly when it passes under the maximum at
−π/2.

The model makes testable predictions: range of entrainment is the same as |µ| ≤ 1 which is
equivalent to

ω − A ≤ Ω− ω ≤ ω + A.

By measuring the range of entrainment experimentally, one can nail down the value of the param-
eter A.

4.6 Superconducting Josephson Junctions
Let us roughly introduce the physical background of Superconducting Josephson Junctions (the
textbook provides a much more vivid story).

A Josephson junction consists of two superconductors separated by a weak connection. Brian
Josephson (1962) (at his age of 22) suggested that it should be possible for a current to pass
between the two superconductors, even if there were no voltage difference. This means that there
is no resistance. (Josephson won the Nobel Prize in 1973.)

1. It is known that when the current I is smaller than a critical current Ic, no voltage will be
developed across the junction; that is the junction acts as if it has zero resistance. However
the phases of the two superconductors will be driven apart to a constant phase difference!

2. When I > Ic, constant phase difference disappears, and there is a voltage develops across
the junction.

Using the Josephson relations and Kirchhoff’s voltage and current laws, we arrive at the fol-
lowing differential equation:

hC

2e
ϕ′′ +

h

2eR
ϕ′ + Ic sinϕ = I

where the constants are all positive. ϕ denotes the phase difference of the two superconductors.
The physical meanings of them can be found in the textbook.

Next, as before, we perform substitutions to simplify the equation, and we consider the “over-
damped limit”. We obtain

ϕ′ =
I

Ic
− sinϕ.
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As we know from Section 4.3 that the solutions of the equation tend to a stable fixed point when
I ≤ Ic and vary periodically when I > Ic. These agree with the above two listed observations.

One more interesting application of the DE is that we can find the current-voltage curve. Ac-
cording to the textbook

V =
h

2e
ϕ′.

Hence the average of V is proportional to the average of ϕ′.
When I ≤ Ic, all solutions ϕ converge to a fixed point. Therefore ϕ′ = 0. When I > Ic, ϕ is

periodic with period

T =
2π√

(I/Ic)2 − 1
.

And so the average of ϕ′ is

1

T

∫ T

0

ϕ′dτ =
1

T

∫ 2π

0

dϕ =
2π

T
=

√
(I/Ic)2 − 1.

Overall, we get a relation between the average of voltage and the current. Clearly it is not a
smooth function (see Figure 4.6.4 in the textbook).

5 Two-dimentional flows: linear systems

5.1 Definitions and examples
A two-dimensional linear system with constant coefficients is a system of the form

x′ = ax+ by,

y′ = cx+ dy

where a, b, c, d are some constants. Using the matrix notation, the equation can be written com-
pactly into the following form:

x′ = Ax

where

A =

(
a b
c d

)
, x =

(
x
y

)
.

The system is linear in the sense that if x1 and x2 are solutions, then so is the linear combination
c1x1 + c2x2 for any c1, c2 ∈ R.

One way to visualize the solution is to plot the graphs of x(t), y(t) in one plane. However to
emphasize the relation between x(t) and y(t), we plot them as moving trajectories in the (x, y)
plane, in this context called the phase plane.

Example 5.1.1. Solve the linear system x′ = Ax, where A is a diagonal matrix
(
a 0
0 −1

)
. Graph

the phase portrait as a varies from −∞ to ∞, showing the qualitatively different cases.
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Proof. The system is the same as

x′ = ax,

y′ = −y

which shows that the two equations are uncoupled; there’s no x in the y-equation and vice versa.
Thus we get the solutions:

x(t) = x0e
at, y(t) = y0e

−t.

In order to plot the trajectories in an x − y coordinates for various values of initial data x0, y0
(called the phase portrait of the system), let us use the two equalities to get rid of t:

yax = ya0e
−atx0e

at = ya0x0.

Then
y = cx− 1

a where c = y0x
− 1

a
0 .

Then we plot the graphs of y = cx− 1
a for various of c and separately for a < −1, a = −1,

a ∈ (−1, 0), a = 0 (the equation is x = x0), and a > 0 (see Figure 5.1.5). When c > 0 and
a < −1, the curve is concave and is connecting to the origin; when c > 0 and a ∈ (−1, 0), the
curve is convex and is connecting to the origin; when a > 0, general curves are away from the
origin.

Next we also need to draw arrows on the curves indicating the flows’ direction (how the solu-
tions move as time increases). To do this we need to use the original expressions for x = x(t) or
y = y(t). Now let us revisit the first case of c > 0, a < −1. We have x(t) decays more rapidly
than y(t) as t → ∞. On the other hand, if we look backwards along a trajectory ( t → −∞) then
the trajectories all become parallel to the faster decaying direction (here, the x-direction). This is
because

dy

dx
=

y′

x′ = − y

ax
= − y0

ax0

e−t−at

which → 0 as t → −∞. When a = 0, solutions are x(t) ≡ x0 which is called a line of fixed
points.

Stability of the origin. Notice that x(t) ≡ 0 and y(t) ≡ 0 is a solution, and so we can call the
original point a fixed point. Now we discuss the stability of this fixed point for the different values
of a. When a < 0, all trajectories converge to the origin as t → ∞. Therefore, x∗ = 0 is called a
stable node for a < 0. When a > 0, x∗ = 0 becomes unstable. Except the case when x0 = 0, all
trajectories move away from the origin eventually as t → ∞. If we look at backwards in time, then
except the case when y0 = 0, all trajectories move away from the origin eventually as t → −∞.
We call x∗ = 0 is called a saddle point.

Some definitions of stable fixed points. We say that x∗ = 0 is an attracting fixed point if
all trajectories that start near x∗ approach it as t → ∞. It could be called globally attracting if it
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attracts all trajectories in the phase plane. So we can call x∗ = 0 globally attracting in the above
example when a < 0.

Another stability we introduce is the Lyapunov stability (note that the spelling in the textbook
is wrong!). We say that a fixed point x∗ is Lyapunov stable if all trajectories that start sufficiently
close to x∗ remain close to it for all time. More precisely (the former definition), for every ϵ > 0,
there exists a δ > 0 (probably << ϵ) such that, if ∥x(0) − x∗∥ < δ, then ∥x(t) − x∗∥ < ϵ for all
t ≥ 0. Then in the case a = 0 in the example, x∗ = 0 is Lyapunov stable, but not attracting. When
a fixed point is Lyapunov stable but not attracting, it is called neutrally stable.

Conversely, it’s possible for a fixed point to be attracting but not Lyapunov stable (see Figure
5.1.6) (we had studied examples with phase portrait like Figure 5.1.6. Can you recall it?). Here
θ = 0 attracts all trajectories as t → ∞, but it is not Lyapunov stable; because there are trajectories
that start infinitesimally close to θ = 0 but go on a very large excursion before returning to θ = 0.

Finally if a fixed point is both Lyapunov stable and attracting, we’ll call it stable or aymptoti-
cally stable. if a fixed point is neither Lyapunov stable nor attracting, we call it unstable.

5.2 Classification of linear system
Let me recall that we learned the characteristic equation method to find general solutions to

x′′ + bx′ + cx = 0.

If you call y := x′. Then the equation becomes the 2-dimensional linear system:(
x
y

)′

=

(
0 1
−c −b

)(
x
y

)
.

Now let us consider general matrices A =

(
a b
c d

)
. It was discussed in Math 20B that if we

plug in the following function valued vector in the the equation:

x(t) = eλtv

where λ is a constant to be determined, and v is a constant vector to be determined, we get λv =
Av. This equality holds as long as λ is an eigenvalue and v is an associated eigenvector.

Example 5.2.1. Solve the initial value problem

x′ = x+ y, y′ = 4x− 2y,

subject to the initial condition (x0, y0) = (2,−3).

Solution. In this example, the matrix A =

(
1 1
4 −2

)
. First let us find out the eigenvalues: we

compute
det(λ− A) = 0.
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This leads to λ2+λ−6 = 0 which is often called the characteristic equation. Solving the equation
gives two eigenvalues

λ1 = 2, λ2 = −3.

Since the two eigenvalues are different, we need to find one eigenvector associated to each eigen-
value. Namely we find vi such that

(λiI − A)v = 0.

We get

v1 = (1, 1)T , v2 = (1,−4)T ( here the up-script T denotes transpose).

Then the general solutions are linear combinations of eλitvi:

c1e
λ1tv1 + c2e

λ2tv2.

Finally we use the initial data to solve for the constants c1, c2 to get

x(t) = e2t + e−3t, y(t) = e2t − 4e−3t.

Example 5.2.2. Draw the phase portrait for the above system, and classify the stability of the fixed
points 0 (the origin).

Solution. The system has eigenvalues λ1 = 2, λ2 = −3. Hence the first eigensolution grows
exponentially, and the second eigensolution decays. This means the origin is a saddle point. To
find out the shape more precisely, we plot the trajectories of (on x− y plane)

c1e
λ1tv1 + c2e

λ2tv2.

with either c1 = 0 or c2 = 0. We get two lines: one is spanned by v1 and the other is spanned
by v2. The former is often called the unstable manifold (since λ1 > 0), and the latter is called the
stable manifold. Figure 5.2.2 in the textbook shows the phase portrait

From the definition, since most trajectories diverge to ∞ as t → ∞, the origin is unstable.

Example 5.2.3. Sketch the phase portrait for the case λ2 < λ1 < 0.

Solution. See Figure 5.2.3. As can be seen from the figure, the origin is globally attracting (it is
also lyapunov stable and so it is stable).

Example 5.2.4. What happens if the eigenvalues are complex?

Solution. The solutions are linear combinations of the following two linearly independent solu-
tions:

eαt cos βta− eαt sin βtb,

eαt sin βta+ eαt cos βtb
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where α± iβ are the eigenvalues of the matrix, and a± ib are the corresponding eigenvectors.
The fixed point is either a center or a spiral (Figure 5.2.4). When α = 0, we have centers.

Note that centers are neutrally stable, since nearby trajectories are neither attracted to nor repelled
from the fixed point. When α > 0 we have growing oscillations, that is a unstable spiral (all
trajectories, except the fixed point itself, converge to ∞ as t → ∞). When α < 0, we have
decaying oscillations, that is a stable spiral.

For both centers and spirals, it’s not hard to determine whether the rotation is clockwise or
counterclockwise; just compute a few vectors in the vector field and the sense of rotation should
be obvious.

Example 5.2.5. What happens if the eigenvalues are equal?

Solution. As discussed before, there are two cases. If there are two independent eigenvectors, then
the general solutions are

c1e
λte1 + c2e

λte2

where e1, e2 denote x, y directions respectively. They span the plane and actually every vector is
an eigenvector with this same eigenvalue λ. Then if λ ̸= 0, all trajectories are straight lines through
the origin and the fixed point is a star node (Figure 5.2.5).

The other possibility is that there’s only one eigenvector (more accurately, the eigenspace is
one-dimensional). The general solutions are

c1e
λtv1 + c2e

λt(tv1 + v2)

where v1 is the eigenvector, and v2 is one particular vector that is perpendicular to v1. For example,

x′ = Ax with A =

(
λ 1
0 λ

)
.

We can use the undetermined method to obtain the general solutions

c1e
λt

(
1
0

)
+ c2e

λt

(
t
1

)
.

In this case, the fixed point is a degenerate node. A typical phase portrait is shown in Figure
5.2.6. In the figure is for λ > 0, and we see that all trajectories are parallel to the eigendirection v1

as t → ∞. This is clear from the explicit formula.
The textbook also explained how the name “degenerate” comes from. You can take a look at

that part if you are interested.

In the following figure we summarize the classification of fixed points (of 2-dimensional linear
system): The axes are the trace τ and the determinant ∆ of the matrix A. They are real numbers.
All of the information in the diagram is implied by the following formulas:

λ1,2 :=
τ ±

√
τ 2 − 4∆

2
, ∆ = λ1λ2, τ = λ1 + λ2.
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5.3 Love affairs
This section is devoted to an example of the 2-dimensional linear system.

Let us consider the following “strange” love story: Romeo is in love with Juliet. Suppose
the more Romeo loves her, the more Juliet wants to run away and hide. But when Romeo gets
discouraged and backs off, Juliet begins to find him strangely attractive. Romeo, on the other
hand, tends to echo her: he warms up when she loves him, and grows cold when she hates him.

Let R(t) denotes Romeo’s love / hate for Juliet at time t, and J(t) denotes Juliet’s love / hate
for Romeo at time t. Positive values of R, J signify love, negative values signify hate. This story
yields the equation

R′ = aJ, J ′ = −bR

where a, b are positive, to be consistent with the story. The sad outcome of their affair is a never-
ending cycle of love and hate; the governing system has a center at (R, J) = (0, 0). So they
continually embrace the unhealthy relation: loving and hating each other periodically and they can
never be far apart or be too close. Probably you can find this sad story in movies and even in the
real life..

Let us think about what happens if we have the following system instead?

R′ = aR + bJ, J ′ = bR + aJ

with a < 0, b > 0. Here a is a measure of cautiousness (they each try to avoid throwing themselves
at the other) and b is a measure of responsiveness (they both get excited by the other’s advances).

To solve the equation, we need to find out the eigenvalues and the eigenvectors. Then are

λ1 = a+ b, v1 = (1, 1)T ;

λ2 = a− b, v1 = (1,−1)T .

Clearly λ2 < 0, if λ1 = a+ b > 0 we have a saddle point, and if λ1 < 0 we have a stable node.
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6 Phase plane
In this section, we begin to study nonlinear systems. Again analyzing the fixed points will be
the key to understanding the systems. (Fixed points are always important to a dynamic system.)
There are various different backgrounds for the problem that we will study, ranging from biology
(competition between two species), to physics (conservative systems, reversible systems, and the
pendulum).

6.1 Phase portrait
The general 2-dimensional autonomous first-order system is of the form

x′
1 = f1(x1, x2), x′

2 = f2(x1, x2).

We can also view (f1, f2) as a given vector field on the space R2, and then we call the corresponding
solutions the flows along the vector field. In some content, people can also call the corresponding
solutions as integral curves along the vector field or the streamlines of the vector field.

This system can be written more compactly in vector notation as

x′ = f(x) where x = (x1, x2), f = (f1, f2).

The domain of x is called the phase plane (which is often the whole domain R2 in the course), and
f(x) (or x′) is the vector field at x.

For nonlinear systems, there’s typically no hope of finding the trajectories analytically (this is
also the case for most general ODE and PDE). Even when explicit formulas are available, they
are often too complicated to provide much insight. Instead we will try to determine the qualitative
behavior of the solutions. Our goal is to find the system’s phase portrait directly from the properties
of f(x).

Example 6.1.1. Consider the system x′ = x+ e−y, y′ = −y. Use qualitative arguments to obtain
information about the phase portrait.

Solution. First we find the fixed points by solving x′ = y′ = 0. Then there is only one fixed point:
(x∗, y∗) = (−1, 0). To study the stability of the fixed points, we look at the linearized equation
near the point (−1, 0). Let us call z = x + 1, in which way we made the origin (0, 0) the fixed
point for the system of (z, y). Since

e−y = 1− y +O(y2),

the linearized system is
z′ = z − y, y′ = −y.

The associated eigenvalues of the linearized system are 1,−1. According to the linearization
theorem (Hartman-Grobman theorem):
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if the matrix has no eigenvalue with real part equal to zero, and τ 2 − 4∆ ̸= 0, then the
classification of the fixed point of the original system is (locally) the same the one of the
fixed point of the linearized system.

This yields that (−1, 0) is (locally) a saddle point.
However this is not enough for us to gain the full picture of the system. To sketch the phase

portrait, it is helpful to plot the nullclines, defined as the curves where either x′ = 0 or y′ = 0. The
nullclines indicate where the flow is purely horizontal or vertical. Note that y′ = 0 yields y = 0.
Thus along this line, the flow is to the right where x′ = x + 1 > 0, that is where x > −1, and the
flow is to the left where x < −1. Similarly, the flow is vertical where x′ = x + e−y = 0, which
occurs on the curve shown in Figure 6.1.3. On the upper part of the curve where y > 0, the flow is
downward, and it is upward where y < 0.

The nullclines also partition the plane into four regions. We know the signs of x′, y′ in the four
regions and these give us a rough picture of how the vector field looks like. After plotting out the
vector field, we see that the fixed point is indeed a saddle point (see Figure 6.1.4).

6.2 Existence, and uniqueness
The following theorem grantees that general nonlinear system that we are looking at has at least a
solution near its initial data.

Theorem 6.1. Consider the initial value problem x′ = f(x),x(0) = x0. Suppose that f is contin-
uous and that all its partial derivatives are continuous for x in some open connected set D ⊆ Rn.
Then for x0 ∈ D, the initial value problem has a solution x(t) on some time interval (−τ, τ) about
t = 0, and the solution is unique.

The uniqueness part of the theorem has an important corollary: different trajectories never
intersect. If two trajectories did intersect, then there would be two solutions starting from the same
point (the crossing point), and this would violate the uniqueness part of the theorem. In more
intuitive language, a trajectory can’t move in two directions at once.

In two-dimensional phase spaces, the result that trajectories can’t intersect has a strong geo-
metric consequences. For example, suppose there is a closed orbit C in the phase plane. Then any
trajectory starting inside C is trapped in there forever (Figure 6.2.2).

What is the fate of such a bounded trajectory? If there are fixed points inside C, then the
trajectory might eventually approach one of them, or the trajectory is a closed orbit itself. If there
aren’t any fixed points, the Poincaré-Bendixson theorem states that if a trajectory is confined to
a closed, bounded region and there are no fixed points in the region, then the trajectory must
eventually approach a closed orbit.

6.3 Fixed points and linearization
In this section we elaborate the linearization technique that we have already used. The technique
is used to determine the phase portrait near a fixed point by that of a corresponding linear system
in some robust cases.
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Consider
x′ = f(x, y), y′ = g(x, y),

and suppose that (x∗, y∗) is a fixed point i.e. f(x∗, y∗) = g(x∗, y∗) = 0. Then we shift the fixed
point to the origin by calling

u = x− x∗, v = y − y∗.

Then the original equation can be transformed to

u′ = x′ = f(x∗ + u, y∗ + v)

= fx(x∗, y∗)u+ fy(x∗, y∗)v +O(u2, v2, uv)

where we used Taylor’s expansion and f(x∗, y∗) = 0, and similarly

v′ = gx(x∗, y∗)u+ gy(x∗, y∗)v +O(u2, v2, uv).

Here
fx(x∗, y∗) :=

∂f

∂x
(x∗, y∗)

(sometimes we also use the notation ∂xf(x∗, y∗), and sometimes we drop (x∗, y∗) for simplicity),
and similarly for fy, gx, gy. Here O(u2, v2, uv) denotes some quadratic terms (lower order terms).
Since the quadratic terms are comparably much smaller than the first order terms when u, v are
small, we get the linearized system(

u
v

)′

=

(
fx fy
gx gy

)
(x∗,y∗)

(
u
v

)
.

The matrix is call the Jacobian matrix of (f, g) at point (x∗, y∗).
We need to address the question that does the linearized system give a qualitatively correct

picture of the phase portrait near (x∗, y∗). The answer is yes, as long as the fixed point for the
linearized system is not one of the borderline cases discussed in Section 5.2. In other words, if the
linearized system predicts a saddle, node, or a spiral, then the fixed point really is a saddle, node,
or spiral for the original nonlinear system with the same stability. This is the linearization theorem
we mentioned before.

Example 6.3.1. Find all the fixed points of the system x′ = −x+x3, y′ = −2y , and use lineariza-
tion to classify them.

Solution. To find the fixed points, we solve for the following two simultaneously:

−x+ x3 = 0, −2y = 0.

We get three fixed points: (0, 0), (±1, 0). The Jacobian matrix at a general point (x, y) is

A =

(
∂xx

′ ∂yx
′

∂xy
′ ∂yy

′

)
=

(
−1 + 3x2 0

0 −2

)
.
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Then we can compute the Jacobian matrix at those fixed points. The Jacobian matrices are all
diagonalize matrices which is not surprising since the two equations in the system are uncoupled.
After computing the eigenvalues, we get that (0, 0) is a stable node, and (±1, 0) are two saddle
points.

Because stable nodes and saddle points are not borderline cases, we can be certain that the
fixed points for the nonlinear system have been predicted correctly.

The phase portrait is given in Figure 6.3.1 in the textbook which can be obtained by studying
the nullclines of the system.

The borderline cases (centers, degenerate nodes, stars, or non-isolated fixed points) are much
more delicate. They can be altered by small nonlinear terms. The next example shows that small
nonlinear terms can change a center into a spiral.

Example 6.3.2. Consider

x′ = −y + ax(x2 + y2), y′ = x+ ay(x2 + y2)

where a > 0 is a parameter. Draw the phase portrait at the origin.

Solution. Clearly the origin is the only fixed point. The corresponding linearized system is

x′ = −y, y′ = x.

Thus in view of the linearized system, the origin is a center.
Now we show that it is actually like a unstable spiral for the original nonlinear system. Use

polar coordinates:
x = r cos θ, y = r sin θ.

Now we compute r′, θ′. Since x2 + y2 = r2,

rr′ = xx′ + yy′ = a(x2 + y2)2 = ar4

which implies that r′ = ar3. In the second equality we used the nonlinear system. Next since
θ = arctan y

x
,

θ′ =
xy′ − yx′

x2 + y2
= 1,

by the system again.
Thus in polar coordinates the original system becomes

r′ = ar3, θ′ = 1.

The solution with initial data (r0, θ0) equals

r(t) = (r−2
0 − 2at)−

1
2 , θ(t) = θ0 + t.

Hence clearly, as t increases, r(t) → ∞, and at the same time it rotate round the origin counter-
clockwisely with constant speed.
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Also let us mention that stars and degenerate nodes can be altered by small nonlinearities, but
unlike centers, their stability doesn’t change.

We can classify fixed points according to their stability (and neglect the shapes like stars and
degenerate nodes).

Robust cases:

1. Repellers (also called sources): both eigenvalues have positive real part.

2. Attractors (also called sinks): both eigenvalues have negative real part.

3. Saddles: one eigenvalue is positive and one is negative.

(Stars and degenerate nodes are also included in the above depending only on the stability of fixed
points.)

Marginal cases:

1. Centers: both eigenvalues are pure imaginary.

2. Higher-order and non-isolated fixed points: at least one eigenvalue is zero.

Thus, from the point of view of stability, the marginal cases are those where at least one eigenvalue
satisfies Re(λ) = 0.

6.4 Rabbits versus sheep
In this section we look at the well-known Lotka-Volterra model of competition between two
species. Suppose that both species (say rabbits versus sheep) are competing for the same food
supply (grass) and the amount available is limited. We mainly consider the following two effects:

1. Each species would grow to its carrying capacity in the absence of the other (this is like the
logistic growth model in Section 2.3; we assume (lnx)′ = x′

x
is proportional to the effect

coming from the limitation of the food and competition between the other species). Rabbits
has a larger reproduce rate.

2. When rabbits and sheep encounter each other, sheep is more likely to nudge the rabbit aside
from the food.

Let us use x(t) to denote the population of rabbits, and y(t) the population of sheep. A specific
model that incorporates these assumptions is

x′ = x(3− x− 2y), y′ = y(2− x− y).

We call f = x(3− x− 2y), g = y(2− x− y).
It is not hard to get the following four fixed points: (0, 0), (0, 2), (3, 0), and (1, 1). To classify

them, we compute the Jacobian and get

A := J(f, g) =

(
3− 2x− 2y −2x

−y 2− x− 2y

)
.
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Now we plug in the coordinates’ values of fixed points to get that: (0, 0) is a unstable node; (0, 2),
(3, 0) are stable nodes; (1, 1) is a saddle. The fixed points are all robust.

Then you can try to find out the eigenvectors which will tell how the phase portrait look like
locally near the fixed points. And then connect the vector fields smoothly to obtain the whole phase
portrait picture. This is done in the textbook.

The other way is to check nullclines. We see that they are exactly x = 0, 3− x− 2y = 0, y =
0, 2 − x − y = 0. After figuring out the directions of vector fields on the nullclines, we are also
able to sketch the phase portrait.

The phase portrait has an interesting biological interpretation. It shows that one species gen-
erally drives the other to extinction. Trajectories starting below the stable manifold (of the saddle
point) lead to eventual extinction of the sheep, while those starting above lead to eventual extinc-
tion of the rabbits. We call the region that is below the stable manifold basin of attraction of fixed
point (3, 0). Then for any initial data x0 in this region, the corresponding solutions eventually
converge to (3, 0) (rabbits survive and sheep die out).

6.5 Conservative systems
Here by conservative system we consider a particle system where the only force acting on the
particle comes from some potential energy V . The equation is

mx′′ +
dV

dx
= 0.

It can be shown that the total energy

E =
1

2
m(x′)2 + V (x)

is preserved, by which we mean that if x(t) is a solution, then E(x(t)) is a constant function of t.
This can be easily checked by differentiating E(x(t)) with respect to t and obtain that d

dt
E(x(t)) =

0. Here 1
2
m(x′)2 is called the kinetic energy.

The most striking fact about conservative system is the following theorem:

Theorem 6.2. (Nonlinear centers for conservative systems) Consider the system x′ = f(x). Sup-
pose there exists a conserved quantity E(x) and suppose that x∗ is an isolated fixed point (i.e.,
there are no other fixed points in a small neighborhood surrounding x∗). If x∗ is a local minimum
of E, then all trajectories sufficiently close to x∗ are closed.

I will explain an intuitive idea of the theorem at the end of the following example.

Example 6.5.1. Consider a particle of mass m = 1 moving in a double-well potential V (x) =
−1

2
x2 + 1

4
x4. Find and classify all the equilibrium points for the system. Then plot the phase

portrait and interpret the results physically.
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Solution. The force is −dV/dx = x−x3, so the equation of motion is x′′ = x−x3. Letting y = x′

(which represents the velocity), we get the following first-order system

x′ = y, y′ = x− x3.

There are three fixed points (x∗, y∗): (0, 0) and (±1, 0). To classify these fixed points we
compute the Jacobian

A =

(
0 1

1− 3x2 0

)
.

The linear approximation predicts that (0, 0) is a saddle, and (±1, 0) are two centers. We have
discussed that centers are not robust under small perturbations i.e. we cannot trust the linearization
method if the fixed points are predicted to be a center. However conservative system is an excep-
tion, and this is due to Theorem 6.2. Because in the example we can check that (±1, 0) is indeed
the minimum of E. The theorem implies that the two fixed points are centers.

We can actually connect the phase portrait to the motion of an undamped particle in a double-
well potential. The fixed point (1, 0) corresponds to the scenario that the particle stays at one of the
two bottom areas of the double-well potentials. While if y ̸= 0 and |y| is small, then it corresponds
to that the particle has a small speed. Then the particle will not stay at the bottom anymore, but
instead it will oscillate in the bottom area. The oscillation is represented by a closed orbits in the
phase portrait, and we have a center there. The large orbits represent more energetic oscillations
that repeatedly take the particle back and forth over the hump. If the velocity of the particle is just
right, it can climb up the hill and stay at the local maximum of the double-well potential. And this
corresponds to the stable manifold in the phase portrait that is connecting to the saddle point.

Example 6.5.2. Suppose that E is not a constant on any open set. Show that conservative system
cannot have any attracting fixed points.

The proof is given in the textbook in Example 6.5.1.

6.6 Reversible systems
By reversible system we mean that the dynamics look the same when we run the system backward
in time. People also refer to it as the time-reversal symmetry.

Firstly for a first-order 2-dimensional system, we say that it is reversible, if it is invariant under
t → −t and (x, y) → (x,−y). This definition seems a little bit artificial at first glance. Let us use
the following general example to explain.

Example 6.6.1. Any mechanical system of the form mx′′ = F (x) is symmetric under time reversal.

Solution. By introducing y = x′, the system can be rewritten into

x′ = y, y′ =
1

m
F (x).
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Then if we change the variables: t → −t, (x, y) → (x,−y), both equations stay the same. Hence if
(x(t), y(t)) is a solution, then so is (x(−t),−y(−t)). Equivalently if denoting π(x, y) = (x,−y),
we have

d

dt
(πx(−t)) = −(x′,−y′)(−t) = −πf(x(−t)) =

(
−y(−t),

F (x(−t))

m

)T

= f(π(x(−t))).

Reversible systems are different from conservative systems, but they share some similar prop-
erties. For instance, centers are robust in reversible systems as well.

Theorem 6.3. Suppose the origin x∗ = 0 is a linear center for the continuously differentiable
system

x′ = f(x, y), y′ = g(x, y), (2)

and suppose that the system is reversible. Then all trajectories that are sufficiently close to the
origin, are closed curves.

Here we remark that in order to have the equation (2) being reversible, we need f to be odd in
y, and g to be even in y (i.e. f(x, y) = −f(x,−y), g(x, y) = g(x,−y)). Can you prove it?

The key idea of the proof of the theorem is this: Consider a trajectory that starts on the positive
x-axis near the origin. Due to the dominant influence of the linear center, if sufficiently near the
origin, the trajectory must intersect the negative x-axis. By reflecting the trajectory across the x-
axis, and changing the sign of t, we obtain a twin trajectory with the same endpoints but with its
arrow reversed (Figure 6.6.3). This makes the origin a center.

Example 6.6.2. Show that the system

x′ = y − y3, y′ = −x− y2

has a nonlinear center at the origin, and plot the phase portrait.

Solution. Firstly it is easy to check that the system is reversible, since the equations are invariant
under the transformation t → −t, (x, y) → (x,−y). Next we compute the Jacobian at the origin
which is

A =

(
0 1
−1 0

)
and so the origin is a center for the linearized system. By Theorem 6.3, the origin is a nonlinear
center.

The other fixed points of the system are (−1, 1) and (−1,−1) and they are saddle points,
as is easily checked by computing the linearization. The phase portrait is given in Figure 6.6.4.
Notice that in the picture the trajectories above the x-axis have twins below the x-axis, with arrows
reversed.
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In general there is a definition of reversibility which extends nicely to higher-order systems.
Suppose there is a map π in the phase space, and it satisfies π ◦ π = id. Then a dynamic system
x′ = f(x) is time reversible, if it is invariant under the change of variables (t,x) → (−t, π(x)).
For example in our previous definition, the map can be taken to be

π(x, y) = (x,−y).

We have the following example

Example 6.6.3. Show that the system

x′ = −2 cos x− cos y, y′ = −2 cos y − cosx

is reversible, but not conservative. Then plot the phase portrait.

Solution. The system is invariant under the change of variables t → −t, (x, y) → (−x,−y).
Hence the system is reversible, with π(x, y) = (−x,−y). Due to this symmetry, we know that ev-
ery trajectory has its twin trajectory that is no longer symmetric about the x-axis, but is symmetric
about x = y.

The idea of showing that the system is not conservative, is to show that it has an attracting fixed
point. We will do it below. It is also worthy thinking about whether or not we can find a unstable
node to prove this since it is like the “reverse” of attracting fixed point.

Now we find the fixed point which is amount to solve 2 cos x = − cos y, 2 cos y = − cosx. We
get cosx = cos y = 0. Then by periodicity we get the following four groups of fixed points:

(
π

2
+2kπ,

π

2
+2kπ), (−π

2
+2kπ,

π

2
+2kπ), (

π

2
+2kπ,−π

2
+2kπ), (−π

2
+2kπ,−π

2
+2kπ)

with k ∈ N (all integers). Since the Jacobian matrix is
(
2 sin x sin y
sinx 2 sin y

)
, the four groups of fixed

points are unstable nodes, saddles, saddles, and stable nodes respectively.

Finally let me mention that symmetry is always very important in both mathematics and physics.
For example in physics, Noether’s theorem states that every differentiable symmetry of the action
of a physical system has a corresponding conservation law.

6.7 Pendulum
(Skipped)

6.8 Index theory
There are a lot of index theory in mathematics and physics. Here we introduce one of them.

Suppose that x′ = f(x) is a smooth vector field on the phase plane. Consider a closed curve
C which is not necessarily a trajectory. We might only take simple closed curve (i.e. C doesn’t
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intersect itself) and that it doesn’t pass through any fixed points of the system. Then at each point x
on C, the vector field x′ = (x′, y′) makes a well-defined angle ϕ = tan−1(y′/x′) with the positive
x-axis. As x moves counterclockwise around C, the angle ϕ changes continuously since the vector
field is smooth. Notice that when x returns to its starting place, ϕ returns to its original direction.
Hence, after going over C once, ϕ changed by 2kπ (denoted as [ϕ]C) with k ∈ Z. Finally we
define this k (which can be written as 1

2π
[ϕ]C) to be the index of the closed curve C with respect to

the vector field f .

Example 6.8.1. Suppose the vector field is f(x, y) = (x, y). Show that for any simple closed curve
C that contains the origin, IC = 1. Show that if C does not contain the origin, then IC = 0.

Example 6.8.2. Given the vector field in Figure 6.8.4a, compute IC .

Computing the index is useful. It encodes some important properties of the dynamic system.
For instance if for a system, there is a closed curve C such that IC = 1. Then there must be a fixed
point inside the curve. This statement will be clear after we introduce the properties of index. But
before that we look at the following example.

Example 6.8.3. Show that the system x′ = xe−x, y′ = 1 + x+ y2 has no closed orbits.

Solution. Clearly the system has no fixed point. Now if there is a closed orbit, then taking the
orbit as C, we see that the vector field is always the tangent vector on C. As a point going over
the closed curve, the tangent rotate by 2π. Therefore the definition of the index yields that IC = 1.
This implies that there is at least one fixed point inside C which is a contradiction.

Now we introduce some properties of index:

1. Suppose that C can be continuously deformed into C ′ without passing through a fixed point.
Then IC = IC′ . (Continuous deformation is one the most important and basic idea in topol-
ogy. When continuously deforming the curve, IC also varies continuously. However since
IC is always an integer, it has to be stay the same.)

2. If C doesn’t enclose any fixed points, then IC = 0. (You can use (1) and deform C to be a
tiny circle along which the vector field is almost the same as a constant vector field. For the
later IC ≈ 0 and so since IC is an integer, IC = 0.)

3. If we reverse all the arrows in the vector field by changing t → −t, the index is unchanged.
(All angles just change from ϕ to ϕ+ π.)

4. Suppose that the closed curve C is actually a trajectory for the system, i.e., C is a closed
orbit. Then IC = 1.

Suppose x∗ is an isolated fixed point. Then the index I of x∗ is defined as IC , where C is a
small circle which encloses x∗. By property (1) above, IC is independent of the C we choose as
long as it does not intersect or enclose any other fixed point, and so it is a property of x∗ alone. We
will call it the index I = I(x∗) of the fixed point x∗.
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Example 6.8.4. Find the index of a stable node, an unstable node, and a saddle.

Solution. They are 1, 1,−1.

Theorem 6.4. If a closed curve C surrounds n isolated fixed points x1, x2, ..., xn and there is no
fixed point on C, then

IC = I1 + I2 + ...+ In

where Ik is the index of xk.

As a corollary of the theorem, we have any closed orbit in the phase plane must enclose fixed
points whose indices sum to +1.

Example 6.8.5. Show that closed orbits are impossible for the rabbit vs. sheep system

x′ = x(3− x− 2y), y′ = y(2− x− y)

with x ≥ 0, y ≥ 0.

The proof is given in the textbook.
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