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Abstract. We show that long time solution dynamic for general reaction-advection-diffusion
equations with KPP reactions is virtually linear in the following sense. Its leading order de-
pends on the non-linear reaction only through its linearization at u = 0, and it can also be
recovered for general initial data by instead solving the PDE for restrictions of the initial
condition to unit cubes on Rd (the latter means that non-linear interaction of these restricted
solutions has only lower order effects on the overall solution dynamic). The result holds un-
der a uniform bound on the advection coefficient, which we show to be sharp. We also extend
it to models with non-local diffusion and KPP reactions.

1. Introduction and Main Results

Many processes in nature are modeled by the reaction-diffusion equation

ut = Lu+ f(t, x, u). (1.1)

The unknown function u represents concentration of a substance or density of a species,
which is subject to diffusion as well as some possibly space-time dependent reactive process
(which may be a combination of birth and death processes), modeled by the two terms on the
right-hand side of (1.1). The basic case is L = ∆, but when diffusion may be inhomogeneous,
non-isotropic, and time-dependent, and an underlying advective motion may also be present
(such as for processes occurring in fluid media), one instead considers the more general case

Lu(t, x) :=
d∑

i,j=1

Aij(t, x)uxixj(t, x) +
d∑
i=1

bi(t, x)uxi(t, x). (1.2)

We will study here this model and its non-local version

Lu(t, x) := p.v.

∫
Rd
K(t, x, ν) [u(t, x+ ν)− u(t, x)] dν, (1.3)

with KPP (a.k.a. Fisher-KPP) reactions f . Named after Kolmogorov, Petrovskii, and Piskunov
[6] and Fisher [4], who first studied them in 1937, these reactions are defined as follows.

Definition 1.1. A Lipschitz function f : R+ × Rd × [0, 1] → R is a KPP reaction if
f(·, ·, 0) ≡ 0 ≡ f(·, ·, 1) and f(t, x, u) ≤ fu(t, x, 0)u for all (t, x, u) ∈ R+ × Rd × [0, 1] (with
fu(·, ·, 0) existing pointwise), plus the following uniform hypotheses are satisfied. We have
inf(t,x)∈R+×Rd f(t, x, u) > 0 for each u ∈ (0, 1), as well as inf(t,x)∈R+×Rd fu(t, x, 0) > 0 and

lim
u→0

sup
(t,x)∈R+×Rd

(
fu(t, x, 0)− f(t, x, u)

u

)
= 0.
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Hence we will have (t, x) ∈ R+ × Rd, and we define f(t, x, ·) only on [0, 1] because we will
consider here solutions 0 ≤ u ≤ 1 (i.e., with normalized concentration or density u). While
both u ≡ 0 and u ≡ 1 are stationary solutions for (1.1), the former is unstable while the
latter is asymptotically stable because f > 0 on R+ × Rd × (0, 1), and one is interested in
the transition of solutions from values near 0 to those near 1, which models invasion of the
low concentration region u ≈ 0 by the modeled substance or population.

1.1. Virtual Linearity in the Classical Diffusion Case. There is a vast literature on
(1.1) with KPP reactions, and it would be futile to try to include here a list of even the most
relevant works. The reader can consult the reviews [1, 10] and references therein, although
many more important papers appeared since their publication. When reviewing any of them,
one notices that essentially all the results concerning asymptotic speeds of propagation of
solutions (as opposed to, e.g., those relating to precise locations of the transition regions
between values u ≈ 0 and u ≈ 1, such as in [3,5,7]) have one thing in common: they depend
on f only through fu(·, ·, 0). This is because the main KPP hypothesis f(t, x, u) ≤ fu(t, x, 0)u

means that the reaction strength f(t,x,u)
u

(i.e., the zeroth order coefficient when u = u(t, x) is
any solution to (1.1) and the PDE is viewed as a linear PDE for it) is greatest at values u ≈ 0,
so the leading order of the solution dynamic is determined at these values (and therefore
spatially at the leading edge of the invading population). This is also sometimes referred to
as pulled dynamic, as opposed ot the pushed dynamic for some other types of reactions, such
as ignition or bistable, whose reaction strength is largest at intermediate values of u (and
therefore the solution dynamic is also primarily determined at these values [12,13]).

Since f(t, x, u) ≈ fu(t, x, 0)u at u ≈ 0, one might then think that the leading order of
the solution dynamic for (1.1) with a KPP reaction is the same as for the linear PDE with
fu(t, x, 0)u in place of f(t, x, u) (at least when considering the minimum of a solution of
the latter and 1). This is not true in general because even if a spatial region has large
fu(·, ·, 0) for all time (such regions can drive the linear dynamic in all space-time), its effect
on the non-linear dynamic vanes once the solution reaches values away from 0 on that region.
Nevertheless, dependence of the leading order of the solution dynamic on fu(·, ·, 0) only
(rather than on all of f) is a version of linearity, and the author is not aware of any prior
result that formally establishes this phenomenon for general KPP dynamics.

Our first main result, Theorem 1.2 below, therefore appears to be the first such result.
Moreover, it also demonstrates that (1.1) with KPP reactions shares another property with
linear equations. Namely, that the leading order of the solution dynamic for a general initial
condition u(0, ·) can be recovered from solving the PDE with initial conditions that are
obtained by restricting u(0, ·) to members of a partition of Rd into compact sets (we use
below the unit cubes Cn := (n1, n1 +1)×· · ·× (nd, nd+1) with n ∈ Zd, but our proofs can be
easily adapted to other choices). That is, nonlinear interaction between the resulting initially
compactly supported solutions does not affect the leading order of the solution dynamic, so
in this sense the solution operator for (1.1) is also close to being linear.

This virtual linearity of (1.1) means that to investigate the leading order of the solution
dynamic, it suffices to replace a general KPP reaction by some “template” reaction sharing
the same fu(·, ·, 0) (e.g., f ′ in Theorem 1.2), as well as to only consider solutions with initial
data supported inside small compact sets. We demonstrate it for general KPP reactions f and
uniformly elliptic diffusion matrices A, together with advection vectors b that are uniformly
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bounded above by twice the square root of the product of the ellipticity constant of A and
inf fu(·, ·, 0). Moreover, this bound on b is in fact sharp (see below).

Theorem 1.2. Let f be a KPP reaction and L be from (1.2), where A = (Aij) is a bounded
symmetric matrix with A ≥ λI for some λ > 0, and the vector b = (b1, . . . , bd) satisfies
‖b‖2

L∞ < 4λ inf(t,x)∈R+×Rd fu(t, x, 0). Let g(u) := min{u, 1− u} and

f ′(t, x, u) := fu(t, x, 0)g(u) (1.4)

for (t, x, u) ∈ R+ × Rd × [0, 1]. Then there is φ : R+ → R+ with lims→∞ φ(s) = 0, and for
each δ ∈ (0, 1

2
] there is τδ ≥ 1, such that the following holds (see also Remark 3 below for the

dependence of φ, τδ on A, b, f).
If u : R+×Rd → [0, 1] solves (1.1), and for each n ∈ Zd we let u′n : R+×Rd → [0, 1] solve

(1.1) with f ′ in place of f and with u′n(0, ·) := u(0, ·)χCn, then for each (t, x) ∈ [τδ,∞)×Rd,

sup
n∈Zd

u′n (t− δt, x)− φ(δt) ≤ u(t, x) ≤ sup
n∈Zd

u′n
(
t+ tδ, x

)
+ φ(tδ). (1.5)

Moreover, if there is γ > 0 such that for each (t, x) ∈ R+ × Rd the function u 7→ f(t,x,u)
u

is

non-increasing on (0, γ] and supu∈[γ,∞)
f(t,x,u)

u
= f(t,x,γ)

γ
, then (1.5) also holds with u′n instead

solving (1.1) with f , and with the first inequality being just supn∈Zd u
′
n(t, x) ≤ u(t, x).

Remarks. 1. So up to o(t) time shifts (or even o(t0+) time shifts in the second claim) and
o(1) errors, we have u ≈ supn∈Zd u

′
n. This of course also means that if v is a solution to (1.1)

with f replaced by another KPP reaction that has the same linearization at u = 0, then
v ≈ u in the same sense provided v has the same initial datum (and perturbations of the
latter can also be handled easily, via the maximum principle).

2. The proof can be easily adjusted so that both tδ in (1.5) are replaced by δt.

3. The proof shows that if some non-decreasing function ψ with limu→0 ψ(u) = 0 satisfies

ψ(u) ≥ sup
(t,x)∈R+×Rd

(
fu(t, x, 0)− f(t, x, u)

u

)
,

some Lipschitz f0 with f ′0(0) > 1
4λ
‖b‖2

L∞ satisifes inf(t,x)∈R+×Rd f(t, x, u) ≥ f0(u) > 0 for each

u ∈ (0, 1) (such f0 exists because ψ does), and we let 0 < B ≤ 2
√
f ′0(0)λ− ‖b‖L∞ and

0 < α ≤ min

{
min
i,j
‖Ai,j‖−1

L∞ , ‖fu(·, ·, 0)‖−1
L∞

}
,

then in the first claim of the theorem, φ and τδ depend only on α, λ, ψ, f0, B, d (and τδ also
on δ), while in the second claim they also depend on γ.

4. One could in fact replace supn∈Zd u
′
n by min

{∑
n∈Zd u

′
n, 1
}

in (1.5), which has a more
“linear” feel but is also less convenient to use — including in applications of Theorem 1.2
to homogenization for KPP reaction-diffusion dynamics in random environments, which we
provide in the companion papers [11, 14].

5. Here g could be any other (t, x)-independent KPP reaction with g(u) ≡ u on [0, 1
2
].

However, we cannot use the linear dynamics, with g(u) replaced by u for all u ≥ 0. Indeed,
consider for instance L := ∆ and fu(t, x, 0) = 1 + CχB1(0)(x). Then the asymptotic speed
of propagation of solutions to (1.1) with both f and f ′ is well known to be 2, but this
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speed increases when f is replaced by fu(t, x, 0)u and C ≥ 0 is large enough. It is in fact
2 when λ ≤ 2 and λ√

λ−1
otherwise, where λ (→ ∞ as C → ∞) is the principal eigenvalue

of ∆ + 1 + CχB1(0) on Rd (with
√
λ− 1 being the asymptotic exponential decay rate of the

corresponding radial eigenfunction).

6. One cannot hope for this result to extend to general non-KPP reactions. This is the
case even if we let f ′ := f ; in this case supn∈Zd u

′
n ≤ u is obvious but the second inequality

in (1.5) need not hold even with tδ replaced by δt (see the remark after [14, Theorem 1.4]).

The bound on ‖b‖L∞ in Theorem 1.2 is sharp. Indeed, consider ut = uxx + b̄ux + g(u) with

b̄ > 0 a constant and u(0, ·) := χ(0,1), in which case 2
√
f ′0(0)λ = 2 (taking f0 := g). It is well

known (see, e.g., [7]) that if w solves this Cauchy problem without the first-order term, there
is a strictly decreasing continuous function q : (0, 1)→ R such that if we denote by xθ(t) > 0
the unique point with w(t, xθ(t)) = θ = w(t, 1− xθ(t)), then for each θ0 ∈ (0, 1) we have

lim
t→∞

sup
θ∈[θ0,1−θ0]

∣∣∣∣xθ(t)− (2t− 3

2
ln t+ q(θ)

)∣∣∣∣ = 0.

Of course, the original PDE is solved by u(t, x) := w(t, x+ b̄t); this also equals u′0 in the theo-
rem, while all other u′n are zero. So for yt := (2−b)t− 3

2
ln t+q(1

2
) we have limt→∞ u(t, yt) = 1

2
,

while for each δ ∈ (0, 1) we have

yt = yt−δt − (b̄− 2)δt− 3

2
| ln(1− δ)| = yt+tδ + (b̄− 2)tδ +

3

2
ln(1 + tδ−1).

Hence whenever b̄ ∈ (2, 2 + 4
δ
), we obtain

lim
t→∞

sup
n∈Z

u′n(t− δt, yt) = 1 and lim
t→∞

sup
n∈Z

u′n(t+ tδ, yt) = 0,

which contradicts both inequalities in (1.5) (and for any other KPP reaction f with fu(0) = 1
we get the same result because the above asymptotics still hold, albeit with a different q).
Even for b̄ = 2 we find that

lim
t→∞

sup
n∈Z

u′n(t− δt, yt) = q−1

(
q

(
1

2

)
− 3

2
| ln(1− δ)|

)
>

1

2
,

which still contradicts the first inequality (and if one wants the last claim in the theorem to
technically not apply, it suffices to change the reaction on a short time interval [0, t0] and at
all large x so that the hypothesis of that claim is not satisfied but the change does not affect
any point (t, x, u(t, x)); then the particular solution u considered here is also unchanged).

Nevertheless, it is possible that a version of Theorem 1.2 does hold with a larger uniform
upper bound on b, provided u′n(t − δt, ·) and u′n(t + tδ, ·) are evaluated at some (t, x, δ)-
dependent points instead of at x. Theorem 2.1 below with U ≡ 1 ≡ U ′ would yield such
a result if its hypotheses (2.2) and (2.3) can be verified in some relevant setting. A trivial
example of this is the setting of Theorem 1.2 with a large constant vector b̄ added to b, when
we clearly obtain (1.5) with u′n(t− δt, x+ b̄δt) and u′n(t+ tδ, x− b̄tδ) on the left and right.

1.2. Extension to Non-local Diffusions. Theorem 1.2 extends to (1.1) with non-local
diffusion operators from (1.3) under suitable hypotheses. Firstly, it is crucial that solutions
do not propagate faster than ballistically, which requires the diffusion kernels K to decay
exponentially as ν → ∞. Secondly, even when K is close in some sense to being even in ν
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(here we will only assume it to be even) one can only allow O(|ν|−d−2+α) growth as ν → 0
(with some α > 0) if L is to be well-defined. This is the same growth as for L = −(−∆)α/2, for
which well-posedness, comparison principle, and the parabolic Harnack inequality are known
to hold [2]. The methods used to establish these should equally apply to various kernels
with O(|ν|−d−2+α) asymptotics as ν → 0 that decay exponentially as ν → ∞. However,
instead of trying to prove them in any level of generality, we will state these properties as
hypotheses so that our result applies whenever these can be established. We note that the
Harnack inequality referred to here is the forward one (unlike for L from (1.2), equations with
non-local diffusions may also satisfy backward-in-time Harnack inequalities, such as in [2]).
Our main result in this setting is now the following analog of Theorem 1.2.

Theorem 1.3. Let f be a KPP reaction and let f ′ be from (1.4). Assume that L is from
(1.3), with K from some family F of even-in-ν kernels such that for some α ∈ (0, 1] and any
K ∈ F , there is K : (0,∞)→ [0,∞) with χ(0,α](r) ≤ K(r) ≤ χ(0,α](r)r

−d−2+α on (0,∞) and

αK(|ν|) ≤ K(t, x, ν) ≤ α−1 max
{
K(|ν|), e−α|ν|

}
(1.6)

for each (t, x, ν) ∈ R+ ×R2d. Assume that (1.1) with any such K, any KPP reaction f , and
locally BV initial data 0 ≤ u(0, ·) ≤ 1 is well-posed in some subspace A ⊆ L1

loc(R+ × Rd),
where the comparison principle for sub- and supersolutions to (1.1) as well as the parabolic
(forward) Harnack inequality also hold (the latter with uniform constants for all K ∈ F and
all f with the same Lipschitz constant), and the solutions for u(0, ·) ≡ 0, 1 are u ≡ 0, 1,
respectively. Then the claims in Theorem 1.2 hold for such L.

Remark. One could also extend this result to mixed diffusion operators, with L being the
sum of the right-hand sides of (1.2) and (1.3), but we will not do so here.

1.3. Acknowledgements. The author thanks Hongjie Dong, Jessica Lin, Jean-Michel Roque-
joffre, and Luis Silvestre for useful discussions and pointers to literature. He also acknowl-
edges partial support by NSF grant DMS-1900943 and by a Simons Fellowship.

2. Classical Diffusion Case

The key to Theorem 1.2 will be the following result, which provides a version of (1.5) on
general D ⊆ Rd and without quantitative restrictions on b. The price to pay is that the
spatial arguments in the three expressions in (1.5) may be different, and one also needs to
guarantee certain exponential growth of solutions from small initial data (which we later
show to hold under the hypotheses of Theorem 1.2).

Consider (1.1) on some open D ⊆ Rd, with L from (1.2). In the following theorem, all

solutions are strong (from W
(1,2),d+1
loc (R+ × D) ∩ C(R+ ×D)) and are assumed to satisfy

homogeneous Dirichlet boundary conditions on R+ × ∂D. We will call such solutions SD
solutions. We note that the relevant well-posedness theory as well as comparison principle
for sub- and supersolutions follow from, e.g., the corresponding linear theory in [8, Chapter 7]
(specifically, Theorems 7.1 and 7.32).

Theorem 2.1. Let L be given by (1.2), with A = (Aij) a bounded symmetric matrix with
A ≥ λI for some λ > 0, and b = (b1, . . . , bd) a bounded vector. Let f, f ′ : R+×D×[0,∞)→ R
be Lipschitz with f(·, ·, 0) ≡ 0 ≡ f ′(·, ·, 0), and let U,U ′ : R+ ×D → [0, 1] be some functions.
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Assume that there are γ ∈ (0, 1
2
] and non-decreasing ψ : (0, 1)→ [0,∞) with limu→0 ψ(u) = 0

such that 0 ≤ f ′(·,·,u)
u
− f(·,·,u)

u
≤ ψ(u) for each u ∈ (0, γ], for each (t, x) ∈ R+×D the function

u 7→ f ′(t,x,u)
u

is non-increasing on (0, γ] and supu∈[γ,∞)
max{f(t,x,u),f ′(t,x,u)}

u
≤ f ′(t,x,γ)

γ
, and

max

{
max
i,j
‖Ai,j‖L∞ , max

i
‖bi‖L∞ , ‖fu(·, ·, 0)‖L∞

}
≤ γ−1. (2.1)

Also assume that there are κ > 0 and φ : R+ → R+ with lims→∞ φ(s) = 0, and for each
t0 ≥ 1 and (s, x) ∈ R+ × D there are yst0,x, y

−s
t0+s,x ∈ D, such that y−st0+s,yst0,x

= x and for

any SD solutions u, u′ : (t0 − 1,∞) ×D → [0, 1] to (1.1) and to (1.1) with f ′ in place of f ,
respectively, we have

u(t0 + s, x) ≥ min
{
eκsu(t0, y

−s
t0+s,x), U(t0 + s, x)− φ(s)

}
, (2.2)

u′(t0 + s, x) ≥ min
{
eκsu′(t0, y

−s
t0+s,x), U

′(t0 + s, x)− φ(s)
}
. (2.3)

Let u : R+×D → [0, 1] be an SD solution to (1.1), and for each n ∈ Zd let u′n : R+×D → [0, 1]
be the SD solution to (1.1) with f ′ in place of f and with u′n(0, ·) := u(0, ·)χcCn∩D for some
c > 0. Then for each δ ∈ (0, 1

2
] there is τδ ≥ 1 (depending also on γ, κ, ψ, c, d) such that

u(t, x) ≥ min

{
sup
n∈Zd

u′n
(
t− δt, y−δtt,x

)
, U(t, x)− φ(δt)

}
, (2.4)

sup
n∈Zd

u′n

(
t+ tδ, yt

δ

t,x

)
≥ min

{
u(t, x)− t−1/δ, U ′

(
t+ tδ, yt

δ

t,x

)
− φ(tδ)

}
(2.5)

for each (t, x) ∈ [τδ,∞)×D. If f ′ = f , then clearly also

u(t, x) ≥ sup
n∈Zd

u′n(t, x). (2.6)

Remarks. 1. Note that the hypotheses on f, f ′ guarantee existence of fu(t, x, 0) = f ′u(t, x, 0)
as well as max{f(t, x, u), f ′(t, x, u)} ≤ fu(t, x, 0)u for all (t, x, u) ∈ R+ ×D × R+.

2. A natural choice of U,U ′ are some SD solutions to (1.1) and to (1.1) with f ′ in place of
f , respectively. For instance, when D = Rd and f(·, ·, 1) ≡ 0 ≡ f(·, ·, 1), one might consider
U ≡ 1 ≡ U ′.

3. The restriction to t0 ≥ 1 is needed so that parabolic Harnack inequality guarantees that
u(t0, ·) does not vary too much near y−st0+s,x. Otherwise hypothesis (2.2) could not hold for
all u.

4. The point y−st,x is such that the values of u near (y−st,x , t− s) provide a good lower bound
for the value at (t, x), and yst,x is such that the values of u near (t, x) provide a good lower

bound for the value at (yst,x, t + s). Of course, if x 7→ y−st,x is a bijection on D for some t, s,
then z 7→ yst−s,z must be its inverse. One natural example of this is yst,x = x, another is given

by the ODE d
ds
yst,x = b(t+ s, yst,x) with y0

t,x = x.

5. One might also consider other boundary conditions, provided the construction of
exponentially-decaying ballistically-moving supersolutions from the proof below can be ad-
justed to that setting.
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Proof. Comparison principle gives for each s ∈ (0, γ] and all (t, x) ∈ R+ ×D that

se−ψ(s)t sup
n∈Zd

u′n(t, x) ≤ u(t, x) ≤ γ−1
∑
n∈Zd

u′n(t, x). (2.7)

Indeed, the first inequality follows from v(t, x) := se−ψ(s)tu′n(t, x) (≤ s) being a subsolution
to (1.1) for each n ∈ Zd, which holds because the hypotheses on f, f ′ yield

se−ψ(s)tf ′(t, x, u′n(t, x)) ≤ f ′(t, x, se−ψ(s)tu′n(t, x)) ≤ f(t, x, se−ψ(s)tu′n(t, x))+ψ(s)se−ψ(s)tu′n(t, x).

The second one follows from v(t, x) := γ−1
∑

n∈Zd u
′
n(t, x) being a supersolution to (1.1) in

the region where v ≤ 1. This holds because if 0 < v(t, x) ≤ 1, then u′n(t, x) ≤ γ for each
n ∈ Zd, so we can take vn := γ−1u′n(t, x) ≤ 1 and apply the estimate

f

(
·, ·,

∞∑
n=1

vn

)
= γ−1

∞∑
n=1

f

(
·, ·,

∞∑
m=1

vm

)(
∞∑
m=1

vm

)−1

γvn ≤ γ−1

∞∑
n=1

f ′(·, ·, γvn).

This estimate holds for all v1, v2, · · · ≥ 0 with 0 <
∑∞

n=1 vn ≤ 1, by the hypotheses on f, f ′.
Next, without loss assume that κ ≤ 1. Let us take any δ ∈ (0, 1

2
], pick s ∈ (0, γ] such that

ψ(s) ≤ κδ
2

, let τδ := 2
κδ
| ln s| ≥ 2, and assume that (2.4) fails for some (t, x) ∈ [τδ,∞) × D.

Then u(t, x) < U(t, x)− φ(δt), so (2.2) and (2.7) yield

u(t, x) ≥ eκδtu
(
t− δt, y−δtt,x

)
≥ eκδtse−κδt/2 sup

n∈Zd
u′n
(
t− δt, y−δtt,x

)
≥ sup

n∈Zd
u′n
(
t− δt, y−δtt,x

)
.

But this means that (2.4) does hold for (t, x), a contradiction. Hence (2.4) must hold.
To prove (2.5), consider any δ ∈ (0, 1

2
], let a := γ−1(1+d+d2) and fix any (t′, x′) ∈ R+×D.

For each n ∈ Zd let xn be the point from cCn closest to x′ and let en := x′−xn
|x′−xn| when xn 6= x′

(otherwise pick any en ∈ Sd−1). Since vn(t, x) := eat−(x−xn)·en is a supersolution to (1.1) by
(2.1), and vn(0, ·) ≥ χcCn ≥ u′n(0, ·), we have

γ−1u′n(t′, x′) ≤ γ−1vn(t′, x′) ≤ γ−1eat
′−|x′−xn|.

Sum of the right-hand sides over all n with |x′−xn| ≥ (a+1)t′ is less than 1
2
(t′)−1/δ whenever

t′ ≥ τ for some (δ, γ, c, d)-dependent τ ≥ 1.
So if (2.5) fails for some (t′, x′) ∈ [τ,∞)×D, then u(t′, x′) ≥ (t′)−1/δ and (2.7) show that

there is n with |x′ − xn| < (a+ 1)t′ such that

γ−1u′n(t′, x′) ≥ 1

2
(t′)−1/δ

(
(a+ 1)t′ + c

√
d
)−d

cdV −1
d , (2.8)

where Vd is the volume of the unit ball in Rd. We also have

u′n

(
t′ + (t′)δ, y

(t′)δ

t′,x′

)
< U ′

(
t′ + (t′)δ, y

(t′)δ

t′,x′

)
− φ((t′)δ)

because (2.5) fails for (t′, x′), so (2.3) yields

u′n

(
t′ + (t′)δ, y

(t′)δ

t′,x′

)
≥ eκ(t′)δu′n(t′, x′)

(recall also that y−st+s,yst,x = x). But (2.8) shows that the right-hand side is greater than

1 whenever t′ ≥ τδ, with some (δ, γ, κ, c, d)-dependent τδ ≥ τ . So (2.5) must hold for all
(t′, x′) ∈ [τδ,∞)×D, otherwise we would have a contradiction.
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Finally, comparison principle immediately yields (2.6). �

We note that when u 7→ f(t,x,u)
u

is non-increasing on (0, 1], then one can easily show that
with f ′ = f we have supn∈Zd u

′
n ≤ u ≤

∑
n∈Zd u

′
n. For d = 1, L = ∂xx, f(t, x, u) = f(u),

and a sum of two initial data (i.e., u(0, ·) = u1(0, ·) + u2(0, ·)), this has already appeared
in [9, Lemma 8.4] and [3, Lemma 3.5].

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let f0, ψ, B, α be from Remark 3 after Theorem 1.2. We will denote
β := f ′0(0) > 0 because it will be used extensively, and let

γ := min

{
α,

1

2
√
βλ

,
1

2

}
> 0

(when proving the last claim, add γ from it into the min). Note that we assume

max
i
‖bi‖L∞ ≤ 2

√
βλ ≤ γ−1.

We will show that Theorem 2.1 applies with yst0,x := x =: y−st0+s,x for all (t0, s, x) ∈ [1,∞) ×
R+ × Rd, with U ≡ 1 ≡ U ′, and some κ, φ (when proving the last claim, we use instead
f ′ := f in Theorem 2.1). Then (2.4) and (2.5) will immediately yield (1.5), provided we
replace φ(t) by φ(t) + t−1/2.

The only hypotheses of Theorem 2.1 that do not obviously hold are (2.2) and (2.3). The
proofs are identical, so let us prove (2.2). The key will be the following construction of
a sequence of appropriate subsolutions {uv,j}∞j=0 to (1.1), which are essentially ballistically
spreading radially symmetric plateaus (with a common positive spreading speed) at levels
converging to 1 as j →∞, with the first of them starting at level v > 0 (which can be chosen
to be arbitrarily small). We will then show that any solution 0 ≤ u ≤ 1 to (1.1) that starts
above the first subsolution will not only remain above it forever, but it will also be eventually
pushed above any other of the subsolutions — and (2.2) will follow. In the whole proof, all
constants and functions may depend on γ, β, λ, ψ,B, f0, d, with only the constant v below
(and constants/functions with v in their subscripts) possibly depending on the solution u.

Let Λ := d
α

, so A ≤ ΛI. If u(t, x) := w(t, |x|) for x ∈ Rd and some w : R+ × R → [0,∞),
then we have (with arguments (t, x) and (t, y) := (t, |x|), as appropriate)

d∑
i,j=1

Aijuxixj =
wyy|x| − wy
|x|3

d∑
i,j=1

Aijxixj +
d

|x|
wy ≥ min{λ,Λ sgnwyy}|wyy| −

d+ Λ

|x|
|wy|.

This and ‖b‖∞ ≤ 2
√
βλ−B yield for C := B

4

√
β/λ (≤ β

2
by B ≤ 2

√
βλ) and all |x| ≥ 3(d+Λ)

B
,

Lu+ (β−C)u− B
3
|∇u| ≥ min {λ,Λ sgnwyy} |wyy| −

(
2
√
βλ− B

3

)
|wy|+ (β − C)w. (2.9)

Let now z be the root of λz2 + (2
√
βλ− B

3
)z + β −C = 0 that lies in the second quadrant

of the complex plane; note that the discriminant of this quadratic equation is

4λC − B

9

(
12
√
βλ−B

)
≤ B

√
βλ− B

9
10
√
βλ = −B

9

√
βλ < 0.



VIRTUAL LINEARITY FOR KPP REACTIONS 9

Then the function ξ̃(y) := eyRe z sin(y Im z) solves λξ̃′′ + (2
√
βλ− B

3
)ξ̃′ + (β − C)ξ̃ = 0. Let

y3 := π
Im z

and let y2 ∈ (0, y3) be its greatest inflection point that is smaller than y3, and let

ξ(y) :=


0 y > y3,

ξ̃(y) y ∈ [y2, y3],

ξ̃(y2) + ξ̃′(y2)(y − y2) y < y2.

Since ξ̃ is convex and positive on [y2, y3), so is ξ on (−∞, y3). Hence ξ′′ ≥ 0 ≥ ξ′ (in the

sense of distributions due to the discontinuity of ξ̃ at y3; elsewhere it is C2) and so

λ|ξ′′| −
(

2
√
βλ− B

3

)
|ξ′|+ (β − C) ξ ≥ 0. (2.10)

Indeed, this clearly holds on [y2,∞), while on (−∞, y2] it follows from(
2
√
βλ− B

3

)
ξ′(y2) + (β − C)ξ(y2) = 0 (2.11)

because on this interval ξ′′ ≡ 0, ξ′ ≡ ξ′(y2), and ξ is decreasing. Then of course the left-hand
side of (2.11) equals (β −C)ξ′(y2)(y− y2) ≥ 0 on (−∞, y2], and it is easy to show that there
are y0 < y1 < y2 and ζ : R → [0,∞) that coincides with ξ on [y1,∞), is concave and C2 on
(−∞, y2], constant on (−∞, y0] (and hence also maximal there), and satisfies

min {λ,Λ sgn ζ ′′} |ζ ′′| −
(

2
√
βλ− B

3

)
|ζ ′|+ (β − C) ζ ≥ 0. (2.12)

Let now v0 > 0 be such that ψ(v0) ≤ C
2

and for any v ∈ (0, v0] let

wv(t, y) :=
min{eCt/2v, v0}

ζ(y0)
ζ

(
y + y0 −

3(d+ Λ)

B
− B

3
t

)
.

Then 0 ≤ wv ≤ v0 because 0 ≤ ζ ≤ ζ(y0), and wv(t, ·) is constant on [−∞, 3(d+Λ)
B

] for each

t ≥ 0. This, (2.9), and (2.12) show that uv,0(t, x) := wv(t, |x|) satisfies on R+ × Rd,

Luv,0 + f(t, x, uv,0)− (uv,0)t ≥ Luv,0 + (β − C)uv,0 −
B

3
|∇uv,0| ≥ 0.

Hence uv,0 is a subsolution to (1.1) such that at each t ≥ 0 we have

min{eCt/2v, v0}χBp+qt(0) ≤ uv,0(t, ·) ≤ min{eCt/2v, v0}χBy3−y0+p+qt(0), (2.13)

where p := 3(d+Λ)
B

and q := B
3

.

Let now tv,0 := max{ 2
C

ln v0
v
, y3−y0

q
}, so that

v0χBy3−y0+p+q(t−tv,0)(0) ≤ uv,0(t, ·) ≤ v0 (2.14)

for all t ≥ tv,0. Let L ≥ 1 be a Lipschitz constant for f0 and let r := f0(v0)
2β−C+L

(< f0(v0)
L
≤ v0).

It follows that f0(v′) ≥ (β − C
2

)(v′ − (v0 − r)) for all v′ ∈ [v0 − r, v0 + r], and so as in the
above argument, we obtain that

u′v(t, x) := v0 − r +
min{eCt/2r, 2r}

ζ(y0)
ζ (|x|+ y0 − p− q(t− tv,0))
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is a subsolution to (1.1) on time interval [tv,0,∞). Since u′v ≤ v0 ≤ uv,0 on {tv,0}×By3−y0+p(0)
and u′v(t, ·) = v0− r < v0 = uv,0(t, ·) on ∂By3−y0+p+q(t−tv,0)(0) for each t ≥ tv,0, it follows that

uv,1 := max
{
uv,0, u

′
vχ{|x|<y3−y0+p+q(t−tv,0)}

}
is a subsolution to (1.1) on time interval [tv,0,∞), with uv,1(tv,0, ·) ≤ uv,0(tv,0, ·). Also, if we
let v1 := v0 + r and tv,1 := tv,0 + σ, where σ := max{ 2

C
ln 2, y3−y0

q
}, then for t ≥ tv,1 we have

v1χBy3−y0+p+q(t−tv,1)(0) ≤ uv,1(t, ·) ≤ v1.

We can use this in place of (2.14) to similarly obtain a subsolution uv,2 to (1.1) on time
interval [tv,1,∞), such that uv,2(tv,1, ·) ≤ uv,1(tv,1, ·) and for all t ≥ tv,2 we have

v2χBy3−y0+p+q(t−tv,2)(0) ≤ uv,2(t, ·) ≤ v2,

where v2 := v1 + f0(v1)
2β−C+L

and tv,2 := tv,1 + σ. Repeating this argument, we obtain a v-

independent sequence 0 < v1 < v2 < . . . converging to 1 (because Lipschitz f0 > 0 on
(0, 1)) and subsolutions {uv,k}k≥0 to (1.1) on intervals [tv,k−1,∞), with tv,k := tv,0 + kσ and
tv,−1 := 0, such that for each k ≥ 1 we have uv,k(tv,k−1, ·) ≤ uv,k−1(tv,k−1, ·) and

vkχBy3−y0+p+q(t−tv,k)(0) ≤ uv,k(t, ·) ≤ vk (2.15)

for all t ≥ tv,k. These subsolutions will now allow us to obtain (2.2).
Let u : (t0 − 1,∞) × Rd → [0, 1] solve (1.1) and pick any x ∈ Rd. Shift A, b, f, u by

(−t0− 1,−x) in space-time so that we have u : (−2,∞)×Rd → [0, 1], and we therefore need
to prove (2.2) with (t0, x) = (−1, 0) (note that the above subsolutions are also subsolutions
for all space-time translations of A, b, f). This is then the estimate

u(s− 1, 0) ≥ min {eκsu(−1, 0), 1− φ(s)} (2.16)

for some u-independent κ, φ as required and all s ≥ 0. Assume also that u 6≡ 0 because
otherwise this holds trivially.

By the parabolic Harnack inequality [8, Corollary 7.42], u ≥ 0, and
∣∣f(·,·,u)

u

∣∣ ≤ 1
γ

for

all u ∈ (0, 1] (since f is KPP), there is u-independent µ ∈ (0, v0e
−C(y3−y0)/2q] such that

u(0, ·) ≥ µu(−1, 0)χBy3−y0+p(0) (note that dependence on λ in Remark 2 after Theorem 1.2
enters through this µ). If we let v := µu(−1, 0) ≤ v0, then u(0, ·) ≥ uv,0(0, ·), so u ≥ uv,0
on [0,∞) × Rd. Thus u(tv,0, ·) ≥ uv,0(tv,0, ·) ≥ uv,1(tv,0, ·), so u ≥ uv,1 on [tv,0,∞) × Rd.
Continuing this way, we find that u ≥ uv,k on [tv,k−1,∞)× Rd for each k, hence

u(t, 0) ≥ max
{

min{eCt/2v, v0}, v1H(t− tv,1), v2H(t− tv,2), . . .
}

(2.17)

for all t ≥ 0, where H := χ[0,∞). Now let κ := C
16

and for each s ≥ 0 define

φ(s) :=

{
1 s < s0 := max

{
2, 16

C
ln 1

µ
, 2(tv,1 − tv,0) + 1

}
,

1− vmax{k | s≥2(tv,k−tv,0)+1} s ≥ s0,

which converges to 0 as s→∞ because vk → 1. Since tv,k − tv,0 (= kσ) is independent of v
(and hence of u) for each k, so is φ. Also note that tv,0 = 2

C
ln v0

v
(and hence eCtv,0/2v = v0)

because µ ≤ v0e
−C(y3−y0)/2q.
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Then (2.16) obviously holds for all s < s0, so let us assume that s ≥ s0 and let k :=
max{j | s ≥ 2(tv,j − tv,0) + 1} (so φ(s) = 1 − vk). If (2.16) fails, then (2.17) implies that
s < tv,k + 1, and hence tv,k < 2tv,0 by the definition of k. But then s ∈ [s0, 2tv,0 + 1], so

eκsu(−1, 0) = eCs/16vµ−1 ≤ eCs/8v ≤ eC(s−1)/4v ≤ min{eC(s−1)/2v, v0} ≤ u(s− 1, 0)

by (2.17). Hence (2.16) also holds for all s ≥ s0, and the proof is finished. �

Note that the proof shows that φ decays exponentially as s→∞ if lim infv→1
f0(v)
1−v > 0.

3. Non-local Diffusion Case

Let us now consider (1.1) on Rd, with L from (1.3). Any solutions considered here will be
from the space A from Theorem 1.3.

Theorem 3.1. Theorem 2.1 holds when f, f ′ are as in that theorem, L is from (1.3) instead
of (1.2), hypotheses on L and (2.1) are replaced by K being even in ν and

max

{
sup

(t,x,ν)∈R+×R2d

K(t, x, ν) max
{
|ν|d+2−γ, eγ|ν|

}
, sup

(t,x)∈R+×Rd
fu(t, x, 0)

}
≤ γ−1,

and well-posedness and comparison principle hold for (1.1) on the space A from Theorem 1.3.

Proof. The proof is identical to that of Theorem 2.1, with the only change being the choice of
the exponential supersolutions vn, which will now instead be vn(t, x) := eat−γ(x−xn)·en/2 with
some γ-dependent a > 0. This is because any u ∈ C3(Rd) satisfies

u(x+ ν) + u(x− ν)− 2u(x) = 2ν ·D2u(x)ν +O(|ν|3),

so K being even in ν and local integrability of |ν|−d+γ imply that (L+γ)vn ≤ avn holds with
some a > 0 depending only on γ. �

Proof of Theorem 1.3. This proof tracks that of Theorem 1.2, first picking β, f0, ψ, γ in the
same way and then using Theorem 3.1 instead of Theorem 2.1. One then again only needs
to prove (2.2) with yst0,x := x =: y−st0+s,x, and U ≡ 1, for some κ, φ. This is done via a similar
construction of an appropriate sequence of subsolutions to (1.1).

Let ζ : R → [−1
2
, 1

2
] be such that ‖ζ(j)‖L∞ ≤ 1 for j = 1, 2, 3 and for some 0 = y0 < y1 <

y2 < y3 < y4 we have that ζ ≡ 1
2

on (−∞, y0] and ζ ≡ −1
2

on [y4,∞), also ζ is concave on

(−∞, y1] and convex on [y1,∞), as well as ζ(y2) = 1
4

and ζ(y3) = 0 and ζ ′′ ≡ 1
100

on [y2, y3].
Taylor’s theorem then shows that for any η, p > 0, the function u(x) := ζ(η|x| − p) satisfies∣∣u(x+ ν) + u(x− ν)− 2u(x)− 2ν ·D2u(x)ν

∣∣ ≤ 2cdη
3|ν|3

for some cd > 0 only depending on d, and for all x, ν ∈ Rd. A simple computation shows
that for any x, ν ∈ Rd we also have

ν ·D2u(x)ν =

(
η2ζ ′′(η|x| − p)− ηζ ′(η|x| − p)

|x|

)(
x

|x|
· ν
)2

.

If we take p ≥ 200, then the first parenthesis above is zero when |x| ≤ 200
η

, while for |x| ≥ 200
η

it is bounded below by −3η2

200
, and for |x| ∈ [y2+p

η
, y3+p

η
] it is bounded below by η2

200
. This,
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evenness of K in ν, and (1.6) (recall also that we have chosen γ to be ≤ α) show that at any
t > 0 we have for any R ≥ 0,

Lu(x) ≥ −
∫
BR(0)

max{|ν|−d−2+γ, 1}
γ

(
3η2|ν|2

200
+ cdη

3|ν|3
)
dν −

∫
Rd\BR(0)

e−γ|ν|

γ
dν (3.1)

for all x ∈ Rd (recall also that u(x+ ν)− u(x) ≥ −1), but also

Lu(x) ≥
∫
Bγ(0)

K(|ν|)

[
γ
η2

200

(
x

|x|
· ν
)2

− cdη
3|ν|3

γ

]
dν−

∫
Rd

e−γ|ν|

γ
min{cdη3|ν|3, 1}dν (3.2)

when |x| ∈ [y2+p
η
, y3+p

η
] (note that both these lower bounds are independent of x).

Let now C ′ := 1
2

infu∈(0,1/2]
f0(u)
u

> 0, pick R so that the second integral in (3.1) is ≤ C′

8
,

and then η ∈ (0, 1] so that the first integral is ≤ C′

8
. Then (3.1) shows that

Lu(x) + 2C ′u(x) ≥ C ′u(x) (3.3)

whenever u(x) ≥ 1
4
. Next decrease η further (this will not compromise (3.3)) so that the

right-hand side of (3.2) becomes some C ′′ > 0 (this is possible because K(r) ≥ 1 for r ≤ γ).
Then (3.2) shows that

Lu(x) ≥ C ′′ (3.4)

whenever u(x) ∈ [0, 1
4
]. But this and η ≤ 1

4
mean that if we let C := 1

2
min{C ′, C ′′} > 0, then

Lu(x) + 2C ′u(x) ≥ C (|∇u(x)|+ u(x)) (3.5)

holds whenever u(x) ≥ 0. This and the definition of C ′ show that if v0 := 1
2
, v ∈ (0, 1

2
], and

uv,0(t, x) :=
(
min{eCt/2v, v0} 2ζ(η|x| − 200− Ct)

)
+
,

then uv,0 is a subsolution to (1.1) on R+×Rd. The factor 1
2

in the exponent is not necessary
but we added it to make uv,0 similar to uv,0 in the proof of Theorem 1.2.

In particular, we now have

v0χB(200+Ct)/η(0) ≤ uv,0(t, ·) ≤ v0

for all t ≥ 2
C

ln v0
v

. As in the proof of Theorem 1.2, we can now find r, tv,0 > 0 (then we let
v1 := v0 + r) and a subsolution

u′v(t, x) := v0 − r +
(
min{eCt/2r, 2r} 2ζ (η|x| − 200− C(t− tv,0))

)
+

to (1.1) on time interval [tv,0,∞) such that

uv,1 := max
{
uv,0, u

′
vχ{|x|<(200+Ct)/η}

}
is also a subsolution to (1.1) on time interval [tv,0,∞). We note that non-locality of L causes
a minor issue here but this can be easily overcome by halving C above so that we can add
Cu(x) to the right-hand side of (3.5). This gives us an extra term C(u′v(t, x) − (v0 − r)) in
the same estimate for u′v, which is no less than Cr at all points where uv,1 > uv,0 (all these
have |x| < (y2 + 200+C(t− tv,0))/η). This will dominate the decrease of Luv′ at these points
caused by replacing uv′ by uv′χ{(200+Ct)/η}, provided tv,0 is chosen large enough (recall that
K has a uniform exponential decay as ν →∞).
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The construction of subsolutions uv,2, uv,3, . . . is analogous (without the need to change C
further), with the corresponding times tv,1, tv,2, . . . not anymore forming an arithmetic se-
quence, but with tv,k−tv,0 again independent of v. We again have uv,k(tv,k−1, ·) ≤ uv,k−1(tv,k−1, ·)
for all k ≥ 1, and (2.15) instead becomes

vkχB(200+C(t−tv,k−1))/η
(0) ≤ uv,k(t, ·) ≤ vk

for all t ≥ tv,k−1 + 2
C

ln 2. The rest of the proof is identical to that of Theorem 1.2 (in
particular, the Harnack inequality for L is used in this part). �
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[13] A. Zlatoš, Propagation of reactions in inhomogeneous media, Comm. Pure Appl. Math. 70 (2017), 884–
949.
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