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Abstract. We show that the generalized SQG equation with α ∈ (0, 14 ] is locally well-
posed on the half-plane in spaces of bounded integrable locally Lipschitz functions that are
natural for its dynamic on domains with boundaries, and allow for some power growth of
the derivative in the normal direction at the boundary. We also show existence of solutions
with smooth initial data that exhibit finite time blow-up in the whole local well-posedness
parameter regime α ∈ (0, 14 ], which is the first finite time singularity result for equations (as
opposed to patch models) of this type. Moreover, we prove sharpness of both these results
by showing ill-posedness of the PDE in the above spaces when α > 1

4 .

1. Introduction and Main Results

The 2D Euler and (inviscid) SQG equations of fluid dynamics are both active scalar PDE

∂tθ + u · ∇θ = 0 (1.1)

with the Biot-Savart law
u := −∇⊥(−∆)−1+αθ, (1.2)

where α = 0 in the Euler case and α = 1
2

in the SQG case, ∇⊥ := (∂x2 ,−∂x1), and ∆ is the

Dirichlet Laplacian if the PDE is stated on a domain with a boundary. When α ∈ (0, 1
2
),

(1.1) is called the generalized SQG equation (g-SQG), and this family interpolates between
Euler and SQG. The Euler equation was first written down by Euler in the 1750s, while SQG
and g-SQG appeared in mathematics and physics literature in the last half-century, in works
going back to Blumen [1], Pedlosky [23], and Constantin, Majda, and Tabak [8] for SQG, and
Pierrehumbert, Held, and Swanson [24], Smith et al. [26], and Constantin, Iyer, and Wu [7]
for g-SQG.

The Euler equation is globally well-posed on both R2 and domains with (smooth enough)
boundaries. For SQG and g-SQG on R2, local well-posedness results in appropriately regular
spaces go back to Wu [28] and Chae, Constantin, and Wu [3], while the question of global
well-posedness vs. blow-up remains one of the central open problems in fluid dynamics; see
also Resnick [25] for existence of global weak L2 solutions, Buckmaster, Shkoller, and Vicol [2]
for non-uniqueness of weak solutions (via convex integration techniques), and Córdoba and
Mart́ınez-Zoroa [11] for ill-posedness results in Ck for k ≥ 2 (the last three papers all involve
SQG). But so far, no well-posedness theory was developed for the SQG and g-SQG equations
on domains with boundaries, other than by Constantin and Nguyen for SQG and regular
enough solutions that vanish at the boundary [9]. In fact, only existence of weak solutions
for general L2 initial data was obtained by Constantin and Nguyen [10] and by Constantin,
Ignatova, and Nguyen [6] for SQG, and by Nguyen [22] for g-SQG, but such solutions might
not be unique (these four papers all considered bounded domains with smooth boundaries).
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The reason behind this limited progress on domains with boundaries may be underpinned
by the fact that while the Biot-Savart law is non-local for all α, the relationship between the
solution and its (time-dependent) stream function ψ := −(−∆)−1+αθ, satisfying ψ ≡ 0 on
the boundary, is local in one direction when α = 0 (i.e., θ = ∆ψ). This allows for ψ, and
hence also for u = ∇⊥ψ to be regular up to the boundary in the Euler case, as long as the
boundary itself is regular (cf. [14,15] and references therein), even if θ does not vanish there.

This property does not carry over to α > 0, and thus complicates development of the
corresponding theory on domains with boundaries. In fact, it is easy to see that when θ
does not vanish on the boundary, its associated velocity u will only be Hölder continuous
there, with the normal derivative of the tangential component of u growing as distance to
the boundary to the power −2α (see (2.5) and (3.3) below). As a result, any such theory for
(1.1) has to involve solutions whose regularity deteriorates at the boundary in some sense.

In contrast, Kiselev, Yao, and the author did establish in 2016 local well-posedness for
the corresponding patch problem on the half-plane when α ∈ (0, 1

24
), where patches with

H3 boundaries are allowed to touch the domain boundary [20] (Gancedo and Patel recently
proved this for H2 patches and α ∈ (0, 1

6
) [13]). In obtaining this result, they leveraged the

fact that angles of the tangent lines of smooth enough patch boundaries must vanish at the
domain boundary, so the lower regularity of the tangential velocity at that boundary will not
distort the patches critically, at least for small enough α > 0. Hence even though the velocity
u does not remain smooth up to the boundary, the patches themselves do stay regular, so [20]
could avoid having to study solutions with singular boundary behaviors in this setting.

The first main contribution of the present paper is the proof that there is in fact a family
of spaces in which local well-posedness does hold for (1.1) with α ∈ (0, 1

4
]. Moreover, this

family is natural for the PDE in the sense that it captures the boundary growth of derivatives
of solutions dictated by the dynamic of the equation — and hence also captures the level of
boundary regularity exhibited by solutions with up-to-the-boundary smooth initial data. We
do this on the half-plane R× R+ here, where (1.2) becomes

u(t, x) :=

∫
R×R+

(
(x− y)⊥

|x− y|2+2α
− (x− ȳ)⊥

|x− ȳ|2+2α

)
θ(t, y)dy, (1.3)

with ȳ := (y1,−y2) and y⊥ := (y2,−y1) (the latter will be more convenient for us than the
more standard definition y⊥ := (−y2, y1), and is equivalent via multiplying θ by −1). We
also dropped some factor cα > 0 in (1.3), which can be done via appropriate scaling in time.

Our crucial observation is that in order to obtain local regularity of solutions, one should
allow only the normal derivative of the solution to deteriorate at the boundary, while requiring
its tangential derivative to remain bounded. Our key Lemma 2.2 below shows that this
then results in only the normal derivative of the tangential component of the velocity to
also deteriorate at the boundary (which in turn only affects the normal derivative of the
solution), while the tangential derivative of the velocity as well as the normal derivative of its
normal component will remain bounded. In fact, we show that the tangential derivative of
the normal component of the velocity then even vanishes at the boundary at an appropriate
rate, despite the gradient of the solution (and of the velocity) being unbounded there. This
is again dictated by the dynamic of the PDE, and plays a crucial role in our proof of local
well-posedness.
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We therefore pick some β ∈ [0, 1) and let W 1,∞
β (R×R+) be the space of all θ : R×R+ → R

such that

‖θ‖L∞ <∞ and ‖θ‖Ẇ 1,∞
β

:= ‖∂x1θ‖L∞ + ‖min{xβ2 , 1}∂x2θ‖L∞ <∞,

with the norm ‖θ‖W 1,∞
β

:= ‖θ‖L∞ + ‖θ‖Ẇ 1,∞
β

. Note that if we define

θ̃(x1, x2) := θ (x1, λβ(x2)) (1.4)

on R× R+, with

λβ(x2) :=

{
(1− β)1/(1−β)x

1/(1−β)
2 x2 ∈ (0, (1− β)−1),

x2 − β
1−β x2 ≥ (1− β)−1,

(1.5)

then

‖θ‖L∞ = ‖θ̃‖L∞ and ‖θ‖Ẇ 1,∞
β

= ‖θ̃‖Ẇ 1,∞ . (1.6)

This means that if we “stretch” the strip R× [0, 1] in the vertical direction according to (1.4),
then W 1,∞

β becomes precisely W 1,∞ (also note that clearly W 1,∞
β ⊆ W 1,∞

β′ when β ≤ β′). In
these new coordinates, the PDE is again a transport equation (2.12), but with velocity ũ from
(2.11) below. Its dynamic is not incompressible anymore, but it instead preserves the measure
λ′β(x2)dx on R × R+. Moreover, Lemma 2.2 can be used to show that ũ is in fact Lipschitz

when θ̃ is (see (2.15)), provided β ∈ [2α, 1 − 2α], which then yields local well-posedness via
standard techniques. This thus yields our main local regularity result, Theorem 1.1(i) below.

Having established local regularity, the natural next question is that of global regularity
vs. finite time blow-up. The 2D Euler equation is known to be critical: Hölder [16] and
Wolibner [27] showed in 1933 that gradients of smooth solutions on smooth domains cannot
grow faster than double-exponentially in time (see also Yudovich [29]), and Kiselev and
Šverák demonstrated such growth to be possible on domains with a boundary (presence of
the boundary was crucial in this work, and while the author showed that gradient of C1,α

solutions can grow exponentially on T2 [30], the question of double-exponential gradient
growth on R2 or T2, or even of exponential growth of smooth solutions on these domains,
remains open). This suggests α = 0 to be a borderline case for finite time blow-up, at least
for domains with boundaries, and this was confirmed for the corresponding patch problem
by Kiselev, Ryzhik, Yao, and the author in [21], where they showed finite time blowup for
the H3 g-SQG patch model on the half-plane when α ∈ (0, 1

24
), which is the interval of α

where [20] established local well-posedness (they also proved global well-posedness for the
corresponding Euler problem).

Their argument in fact equally applies to the PDE (1.1), and hence yields finite time blow-
up for these α once Theorem 1.1(i) is proved. Moreover, the argument works for all α > 0

such that 20−α

6
− 1

1−2α
− 2−α > 0, which means that it breaks down at α ≈ 0.05 and is far

from covering the full range of α for which we proved local well-posedness in Theorem 1.1(i).
Gancedo and Patel used in [13] the same approach with a slightly modified setup that applies
up to α ≈ 0.17, which also suffices to obtain finite time blow-up for all α ∈ (0, 1

6
) (i.e., the

range of their local regularity result for H2 g-SQG patches on the half-plane), but it does
not extend beyond that and so still does not cover all α ∈ (0, 1

4
].
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We revisit here the argument from [21] but perform a much more precise analysis, with
two important improvements. First, we obtain much smaller errors, and in fact evaluate the
relevant integrals exactly in the most critical case; and second, we sharpen the estimate on the
“worst case” scenario for the integrands in those integrals. These allow us to obtain almost
optimal bounds in this argument (we only give up relatively little in the identification of the
worst case scenario), thanks to which we are in fact able to capture the full interval α ∈ (0, 1

4
]

on which we obtained local well-posedness. Near-optimality of our estimates turns out to
be crucial because even then our final bound makes the blow-up argument break down at
α ≈ 0.257, barely past the minimum needed for a complete answer to the finite time blow-up
question! See the discussion after Lemma 4.2 for more details on this.

The above two results form the two parts of the following main result of this paper.

Theorem 1.1. Let α ∈ (0, 1
4
], β ∈ [2α, 1− 2α], and Xβ := W 1,∞

β (R× R+) ∩ L1(R× R+).
(i) For any θ0 ∈ Xβ, there is Tθ0 ∈ (0,∞] and a unique classical solution θ ∈ L∞loc([0, Tθ0);Xβ)

to (1.1) with θ(0, ·) = θ0, where Tθ0 is bounded below by some positive function of (α, β, ‖θ0‖Xβ)
that is decreasing in the last argument, and limt→Tθ0 ‖θ(t, ·)‖Ẇ 1,∞

β
=∞ whenever Tθ0 <∞.

(ii) There is θ0 ∈ Xβ ∩C∞(R×R+) such that Tθ0 <∞, so the unique solution θ blows up
in finite time.

Remarks. 1. Since the dynamic of (1.1) is measure-preserving, the last claim is equivalent

to limt→T∞ ‖θ(t, ·)‖Xβ =∞. By (1.6), it is also equivalent to limt→T∞ ‖θ̃(t, ·)‖Ẇ 1,∞ =∞.

2. Here we refer to locally Lipschitz solutions for which (1.1) holds almost everywhere as
classical solutions. However, it is not difficult to see that the result extends to spaces and
initial data with higher degree of (local) regularity.

3. One has a choice of β when α ∈ (0, 1
4
), and arguably β = 2α could be considered

most natural as this reflects precisely the level of boundary regularity exhibited by general
solutions with smooth initial data.

Theorem 1.1(ii) seems to be the first result for this general family of fluid PDEs that
demonstrates finite time singularity from smooth initial data. We compare it to Elgindi’s
recent surprising blow-up result for the axisymmetric Euler equation without swirl on R3 [12],
which requires initial data to have Hölder continuous vorticity (it then becomes unbounded
in finite time), something that smooth axisymmetric swirl-free solutions to Euler on R3

cannot achieve because the PDE is globally regular in that setting (this result may be similar
in spirit to the exponential growth examples for Euler on T2 in [30]). We also mention
here preprints [4, 5] by Chen and Hou, the second of which was completed shortly after the
present work. These together provide finite time smooth initial data blow-up results for both
3D axisymmetric Euler and 2D Boussinesq equations on bounded domains, and their proofs
heavily employ computer-assisted methods.

We note that the proof of Theorem 1.1(ii) suggests that the blow-up there is happening
via ∂x1θ(t, ·) becoming unbounded near the origin. Since functions in Xβ have ∂x1θ bounded
up to the boundary, this further illustrates that the blow-up in Theorem 1.1(ii) is truly a
non-linear phenomenon, rather than somehow caused by the space Xβ.

Our second main result provides a complete answer to the natural question of sharpness
of (both parts of) Theorem 1.1.
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Theorem 1.2. PDE (1.1) is ill-posed in Xβ for any α ∈ (0, 1
2
) and β ∈ [0, 1) \ [2α, 1− 2α]

(with [2α, 1− 2α] := ∅ when α > 1
4
).

That is, for all the couples (α, β) not covered by Theorem 1.1, the PDE (1.1) is ill-posed in
Xβ (see the start of Section 3 for details). The reason behind this lies in Lemma 2.2, which
through the relationship between u and ũ in (2.13) suggests potential problems with local
regularity due to ∂x2ũ1 becoming unbounded near the boundary when β < 2α and ∂x1ũ2

becoming unbounded there when β > 1−2α. We show that this indeed results in breakdown
of local well-posedness in Xβ for such (α, β).

The proof in fact shows that when β ∈ [0, 2α), then the vertical domain stretching (1.4) is
too weak for obtaining well-posedness, while it is also too strong when β ∈ (1− 2α, 1). This
means that not only Xβ with β ∈ [2α, 1− 2α] are the right spaces for (1.1) on the half-plane
with respect to the W 1,∞ norm, both also that other rates of stretching will not be helpful
when it comes to local well-posedness in this norm.

Moreover, we note that since Lemma 2.2 shows that ∂x1u1 is also bounded up to the
boundary when θ ∈ Xβ, it follows that the lemma (and hence also Theorem 1.1(i)) cannot
possibly extend to α ≥ 1

2
, because u1 is then unbounded unless θ vanishes on the boundary.

Finally, our blow-up proof applies identically to the g-SQG patch model from [20,21], even
though local regularity for that model is presently only known for α < 1

24
(and α < 1

6
in [13]).

Theorem 1.3. For each α ∈ (0, 1
4
], there are solutions to the H3 gSQG patch model on R×R+

from [20,21] (as well as the H2 version from [13]) that cease to exist in finite time. If the local
well-posedness result for this model from [20, 21] (resp. [13]) holds for some α ∈ (0, 1

4
], then

there exist such solutions that exhibit finite time blow-up in the sense of their H3 (resp. H2)
norms diverging to ∞ at some finite time.

Note that the second claim follows from the first and from the proof of Theorem 1.4 in
a recent work of Jeon and the author [17]. Finally, we note that shortly after the present
paper was finished, Jeong, Kim, and Yao obtained independently Theorem 1.1(i) as well as
Theorem 1.2 for β < min{2α, 1− 2α} [18].

We prove Theorem 1.1(i), Theorem 1.2, and Theorem 1.1(ii) in Sections 2, 3, and 4,
respectively. Sections 3 and 4 are independent of each other, so either can be read first.

2. Proof of Theorem 1.1(i)

Below, dependence of all constants C. <∞ will always be specified in their subscripts (so
C will be a universal constant), and the constants are always some finite numbers but may
change from line to line. The following two lemmas are stated at any fixed time t, so we will
suppress t in the notation.

Lemma 2.1. If θ ∈ L1(R× R+) ∩ L∞(R× R+) and α ∈ (0, 1
2
), then u from (1.2) satisfies

‖u‖C1−2α ≤ Cα‖θ‖L1∩L∞ (2.1)

and limx→(s,0) u2(x) = 0 for all s ∈ R.

Proof. Estimate (2.1) is just Lemma 3.1 in [21]. It means that u extends continuously to
R× {0}, and there we have u2 ≡ 0 because the second coordinate of the parenthesis in (1.3)
vanishes when x2 = 0. �
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Lemma 2.2. If θ ∈ Xβ with α ∈ [0, 1
2
) and β ∈ [0, 1), then u from (1.2) satisfies

‖∂x1u1‖L∞ ≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L1∩L∞), (2.2)

‖max{x2α−1
2 , 1}∂x1u2‖L∞ ≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L1∩L∞), (2.3)

‖∂x2u2‖L∞ ≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L1∩L∞), (2.4)

‖min{x2α
2 , 1}∂x2u1‖L∞ ≤ Cα,β

(
‖min{xβ2 , 1}∂x2θ‖L∞ + ‖θ‖L1∩L∞

)
. (2.5)

Proof. From (1.3) we have

u(x) =

∫
R2

(x− y)⊥

|x− y|2+2α
θ(y)dy =

∫
R2

θ(x− y)
y⊥

|y|2+2α
dy, (2.6)

provided we extend θ oddly onto R× R−. Thus for any x ∈ R× R+ and h ∈ [0, 1] we have

|u(x+ he1)− u(x)| ≤
∫
B2(0)

‖∂x1θ‖L∞h
|y|1+2α

dy +

∫
R2\B2(x)

Ch|θ(y)|dy +

∫
B2+h(x)\B2−h(x)

|θ(y)|dy

≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L1 + ‖θ‖L∞)h,

where the first integral is from the second integral in (2.6), the second integral is from the

first integral in (2.6) (in it we used that |∇y
(x−y)⊥

|x−y|2+2α | ≤ C when y /∈ B1(x)), and the third

integral bounds the error in the evaluation of u(x+he1) that was introduced by adding them.
This now yields (2.2) as well as

‖∂x1u2‖L∞ ≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L1∩L∞). (2.7)

Next assume that x2 ∈ (0, 1) and note that oddness of θ in x2 yields

u2(x+ he1)− u2(x) =

∫
R2

(θ(x− y)− θ(x+ he1 − y))
y1

|y|2+2α
dy

=

∫
R×(−∞,x2]

(θ(x− y)− θ(x+ he1 − y))

(
y1

|y|2+2α
− y1

|y − 2x2e2|2+2α

)
dy.

Hence

|u2(x+ he1)− u2(x)| ≤
∫

[−x2,x2]2
‖∂x1θ‖L∞h

|y1|
|y|2+2α

dy

+

∫
R×(−∞,x2]\[−x2,x2]2

‖∂x1θ‖L∞h|y|Cαx2|y|−3−2αdy ≤ Cα‖∂x1θ‖L∞hx1−2α
2 .

This and (2.7) imply (2.3).
We used neither information about ∂x2θ nor oddness of θ in x2 in the proof of (2.2), which

will also be the case in the proof of (2.4). For any x ∈ R×R+ (without loss assume x1 = 0)
and h ∈ [0,min{1, ‖θ‖L∞‖∂x1θ‖−1

L∞}] we have

u2(x+ he2)− u2(x) =

∫
x+[−2,2]2

y1

(
1

|x+ he2 − y|2+2α
− 1

|x− y|2+2α

)
θ(y)dy + A1

for some |A1| ≤ Ch‖θ‖L1 . The integral above equals∫
x+[0,2]×[−2,2]

y1

(
1

|x+ he2 − y|2+2α
− 1

|x− y|2+2α

)
(θ(y)− θ(−y1, y2))dy.
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The parenthesis has the same sign as y2− x2− h
2

so absolute value of this integral is at most∫
x+[0,2]×[−2,2]

y1

(
1

|x+ he2 − y|2+2α
− 1

|x− y|2+2α

)
sgn

(
y2 − x2 −

h

2

)
2M(y1)dy

=

∫
x+[−2,2]2

y1

(
1

|x+ he2 − y|2+2α
− 1

|x− y|2+2α

)
sgn

(
y1

(
y2 − x2 −

h

2

))
M(y1)dy,

where M(s) := min{|s| ‖∂x1θ‖L∞ , ‖θ‖L∞}. But this is precisely u2(x + he2) − u2(x) when θ
is replaced by

θ∗(y) := χx+[−2,2]2(y) sgn

(
y1

(
y2 − x2 −

h

2

))
M(y1)

(we will denote u corresponding to θ∗ by u∗; also note that θ∗ is not odd in y2). Since this is
constant in y2 between the jumps at y2 = x2 − 2, x2 + h

2
, x2 + 2, (2.6) now yields

u∗2(x+ he2)− u∗2(x) =

∫
R2

(θ∗(x− y)− θ∗(x+ he2 − y))
y1

|y|2+2α
dy

= 2

∫
[−2,2]×[−h/2,h/2]

θ∗(x− y)
y1

|y|2+2α
dy + A2,

where |A2| ≤ 8h‖θ∗‖L∞ ≤ 8h‖θ‖L∞ . Let m := min{‖θ‖L∞‖∂x1θ‖−1
L∞ , 2} ≥ h. Then the last

integral equals∫
[−2,2]×[−h/2,h/2]

M(y1)
|y1|
|y|2+2α

dy

≤
∫
Bh(0)

‖∂x1θ‖L∞
|y|2α

dy + 2h

∫ m

h

‖∂x1θ‖L∞
1

y2α
1

dy1 + 2h

∫ 2

m

‖θ‖L∞
1

y1+2α
1

dy1

≤ Cα‖∂x1θ‖L∞h2−2α + Cα‖∂x1θ‖L∞m1−2αh+ Cα‖θ‖1−2α
L∞ ‖∂x1θ‖

2α
L∞h

≤ Cα(‖∂x1θ‖L∞ + ‖θ‖L∞)h,

where we used the fact that the last integral is zero if m = 2. We thus obtain

|u2(x+he2)−u2(x)| ≤ Cα(‖∂x1θ‖L∞+‖θ‖L∞)h+|A1|+|A2| ≤ Cα(‖∂x1θ‖L∞+‖θ‖L1+‖θ‖L∞)h,

and (2.4) follows.
It remains to prove (2.5). For any x ∈ R × R+ (without loss assume again x1 = 0) and

h ∈ [0,min{1, x2
3
}] we have similarly to the proof of (2.2),

u1(x+ he2)− u1(x) =

∫
[−2,2]2

(θ(x+ he2 − y)− θ(x− y))
y2

|y|2+2α
dy

+

∫
R2\(x+[−2,2]2)

(
y2

|x+ he2 − y|2+2α
− y2

|x− y|2+2α

)
θ(y)dy + A3

for some |A3| ≤ 8h‖θ‖L∞ . Letting A4 be the second integral above, we have |A4| ≤ Ch‖θ‖L1 ,
so let I be the first integral above and let

M := ‖min{xβ2 , 1}∂x2θ‖L∞ .
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If x2 ≥ 3, then clearly |I| ≤ CαhM . Otherwise we can use 2|x2 + h − y2| ≥ |x2 − y2| for
y2 /∈ [x2, x2 + 2h] to estimate

|I| ≤
∫

[−2,2]2
2hM |x2 − y2|−β

|y2|
|y|2+2α

dy +

∫
[−2,2]×[x2,x2+2h]

2‖θ‖L∞
|y2|
|y|2+2α

dy. (2.8)

The first integral is no more than

CαhM

∫
[−2,2]

|x2 − y2|−β|y2|−2αdy2 ≤ Cα,βhM max{x1−2α−β
2 , 1}.

The second integral in (2.8) can be estimated by

2‖θ‖L∞
(

4h

∫ 2

x2

2x2

y2+2α
1

dy1 + 4hx2

(x2

3

)−1−2α
)
≤ Cαh‖θ‖L∞x−2α

2 .

So we obtain

|u1(x+he2)−u1(x)| ≤ Cα,βM(1+min{x2, 1}−2α+1−β)h+Cα
(
‖θ‖L∞ max{x−2α

2 , 1}+ ‖θ‖L1

)
h

and (2.5) follows. �

Lemmas 2.1 and 2.2 mean that for α ∈ (0, 1
4
] and β ∈ [2α, 1−2α], solutions to (1.1) satisfy

the a priori estimate
d

dt
‖θ(t, ·)‖Xβ ≤ Cα,β‖θ(t, ·)‖2

Xβ
. (2.9)

To see this, let κβ(x2) := min{xβ2 , 1}, so that λβ from (1.5) satisfies

λ′β(x2) = κβ(λβ(x2)) (2.10)

on (0,∞). If θ solves (1.1)–(1.2) and we let

ũ(t, x1, x2) :=
(
u1(t, x1, λβ(x2)), κβ(λβ(x2))−1u2(t, x1, λβ(x2))

)
, (2.11)

then (2.10) shows that we have

∂tθ̃ + ũ · ∇θ̃ = 0 (2.12)

on R × R+. Note that the dynamic of this PDE preserves the measure λ′β(x2)dx1dx2. We
now obtain

∂x1ũ1(t, x1, x2) = ∂x1u1(t, x1, λβ(x2)),

∂x1ũ2(t, x1, x2) = κβ(λβ(x2))−1∂x1u2(t, x1, λβ(x2)),

∂x2ũ1(t, x1, x2) = κβ(λβ(x2)) ∂x2u1(t, x1, λβ(x2)),

∂x2ũ2(t, x1, x2) = ∂x2u2(t, x1, λβ(x2))−
κ′β(λβ(x2))

κβ(λβ(x2))
u2(t, x1, λβ(x2)),

(2.13)

where we also have

κ′β(λβ(x2))

κβ(λβ(x2))
=

{
βλβ(x2)−1 x2 ∈ (0, (1− β)−1),

0 x2 ≥ (1− β)−1.
(2.14)

Hence Lemma 2.2, the definitions of κβ, λβ, and ‖κβ(x2)∂x2θ(t, ·)‖L∞ = ‖∂x2 θ̃(t, ·)‖L∞ yield

‖∇ũ(t, ·)‖L∞ ≤ Cα,β(‖∇θ̃(t, ·)‖L∞ + ‖θ(t, ·)‖L1∩L∞). (2.15)
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Indeed, this follows using β ∈ [2α, 1− 2α] and

κβ(λβ(x2)) = (1− β)β/(1−β)x
β/(1−β)
2 (2.16)

for x2 ∈ [0, (1− β)−1], as well as

|u2(t, x)| ≤ Cα(‖∂x1θ(t, ·)‖L∞ + ‖θ(t, ·)‖L1∩L∞)x2, (2.17)

which holds by (2.4) and the last claim in Lemma 2.1.
Since ‖θ(t, ·)‖L1 and ‖θ(t, ·)‖L∞ stay constant in time because (1.1) is a transport equation

with divergence-free velocity, (2.15) shows that

d

dt
‖∇θ̃(t, ·)‖L∞ ≤ Cα,β‖∇θ̃(t, ·)‖L∞

(
‖∇θ̃(t, ·)‖L∞ + ‖θ0‖L1∩L∞

)
.

This now yields (2.9).
Having the a priori estimate (2.9), it is easy to construct local solutions inXβ and show their

uniqueness. One can for instance approximate the Biot-Savart kernel y⊥

|y|2+2α by a sequence

of regularized kernels, (e.g., by multiplying it by a smooth approximation of χR2\B1/n(0)),

construct solutions to these regularized equations, and then recover the solution to (1.1) in
the limit (because (2.9) equally holds for solutions to all the regularizations). Uniqueness
then follows from (2.12) and (2.15). This proves Theorem 1.1(i) because (2.9) and constancy
of ‖θ(t, ·)‖L1 and ‖θ(t, ·)‖L∞ show that the unique solution can only cease to exist at some
time T when limt→Tθ0 ‖θ(t, ·)‖Ẇ 1,∞

β
= ∞, as well as that such a time is bounded below by

some function of α, β, and ‖θ0‖Xβ (which can clearly be chosen to be decreasing in the last
argument).

3. Proof of Theorem 1.2

Since the proof of Theorem 1.1(ii) is completely independent of this section, a reader
interested in the singularity result can first read Section 4.

All constants in this section may depend on α. We split the analysis into two cases:
β ∈ [0, 2α) and β ∈ (1 − 2α, 1). In the first we provide initial data in Xβ for which no
solutions exist in L∞([0, T ];Xβ) for any T > 0. In the second case we construct a sequence
of initial data that converges in Xβ but no sequence of solutions for these data can converge
to a solution for the limiting datum in L∞([0, T ];Xβ) for any T > 0.

Case β ∈ [0, 2α). For x ∈ R× R+, let

φ0(x) := min
{

1, d
(
x,R2 \ ([−3, 3]× [−1, 2 + (1− β)−1])

)}
,

with d the distance on R2, and let φ1(x) := max{0, 1 − |x|}. With some an ∈ (0, 2−4n−1]
(n = 1, 2, . . . ), and with λβ from (1.5) and Λβ(x) := (x1, λβ(x2)), define

θ̃0 := φ0 + φ∞ and θ0 := θ̃0 ◦ Λ−1
β ∈ Xβ, (3.1)

where

φ∞(x) :=
∞∑
n=1

anφ1

(
x− (0, 2−4n)

an

)
. (3.2)

It is easy to see that θ̃0 is Lipschitz with constant 1 because supports of the summands
in the series above are disjoint, and are all contained in [−1, 1] × (0, 1]. We will now show
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∇θ0 = (1, 0) ∇θ0 = (–1, 0)

∇θ0 = (0, –1)

θ0 = 0θ0 = 1

Figure 1. Function θ0 for β < 2α, with φ∞ ◦ Λ−1
β supported on the “ellipses”.

that when the an are small enough, a classical solution θ to (1.1) with initial datum θ0 would

have to instantly leave Xβ due to θ̃(t, x) := θ(t,Λβ(x)) not being Lipschitz on [0, T ]×R×R+

for any T > 0. Specifically, we will essentially obtain ∂x2u1(t, x) ∼ x−2α
2 for small t, x2 > 0

and x1 ∼ 0 (with the other three partial derivatives of u sufficiently controlled), which will
result in fast horizontal shearing of the “cap” functions from the series in (3.2) (and hence

instantaneous loss of Lipschitz continuity of θ̃).
As before, extend θ0, φ0, φ∞ oddly onto R2. Let us first look at the velocity

v0(x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
φ0(Λ−1

β (y))dy,

generated by only φ0 ◦Λ−1
β . Lemma 2.2 shows that ∂x1v

0
1 and ∂x2v

0
2 are bounded on R×R+.

Moreover, from

∂x1v
0
2(x) = −

∫
R2

d

dx1

φ0(Λ−1
β (x− y))

y1

|y|2+2α
dy

=

∫
R×(−∞,x2]

d

dx1

φ0(Λ−1
β (x− y))

(
y1

|y − 2x2e2|2+2α
− y1

|y|2+2α

)
dy

and constancy of φ0◦Λ−1
β on [−2, 2]×(0, 2] and on [−2, 2]× [−2, 0) (so the integrand vanishes

when x ∈ [−1, 1]× (0, 1] and |y| ≤ 1) we see that x−1
2 ∂x1v

0
2 is bounded on [−1, 1]× (0, 1].

For the last partial derivative, we can use the same constancy of φ0 and

v0
1(x+ he2)− v0

1(x) =

∫
R2

[
φ0(Λ−1

β (x+ he2 − y))− φ0(Λ−1
β (x− y))

] y2

|y|2+2α
dy

to see that now instead

∂x2v
0
1(x)− 2

∫ 1

−1

x2

|(x2, y1)|2+2α
dy1

is bounded on [−1, 1] × (0, 1] (because of the jump φ0 has at the x1 axis). This means that
on this rectangle we have

∂x2v
0
1(x) ≥ C−1x−2α

2 − C (3.3)



FINITE TIME SINGULARITY FOR THE GENERALIZED SQG EQUATION 11

for some constant C ≥ 1, which we pick so we also have

max
{
∂x1v

0
1(x), ∂x2v

0
2(x), x−1

2 ∂x1v
0
2(x)

}
≤ C (3.4)

there. We will now show that when an above are small enough, then these bounds will hold
for a short time for the actual velocity u, yielding the desired shearing dynamic.

Lemma 2.1 applies uniformly to all solutions θ as above (let us call the constant in it again
C) because ‖θ0‖L1∩L∞ ≤ 15

1−β regardless of our choice of an. So consider any divergence-free

u on [0, T ]× R2 for some T , satisfying u(t, x1,−x2) = (u1(t, x),−u2(t, x)),

sup
t∈[0,T ]

‖u(t, ·)‖C1−2α(R×R+) ≤ C, (3.5)

limx→(s,0) u2(t, x) = 0 for each (t, s) ∈ [0, T ]× R, and such that the left-hand sides of (2.2)–
(2.5) are all finite (with the L∞ norms taken over [0, T ]×R×R+). Note that then ‖x−1

2 u2‖L∞
is also finite, similarly to (2.17), and all these estimates show that d

dt
zt,x = u(t, zt,x) and

z0,x := x has a unique solution on [0, T ] for each x ∈ R2 and zt,· is a measure preserving
bijection on R×R+ (and so also on R×R−) for each t ∈ [0, T ]. If we let z−t,· be its inverse,
then the gSQG velocity

v(t, x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
φ0(Λ−1

β (z−t,y))dy (3.6)

corresponding to the u-transported function φ0 ◦ Λ−1
β satisfies

∂xjv(t, x) = p.v.

∫
R2

∂xj
(x− y)⊥

|x− y|2+2α
φ0(Λ−1

β (z−t,y))dy.

Since ‖u(t, ·)‖L∞ ≤ C, we see that φ0(Λ−1
β (z−t,y)) = sgn(y2) for (t, y) ∈ [0, 1

2C
]× [−3

2
, 3

2
]2. We

can then even remove “p.v.” in

∂xjv(t, x)− ∂xjv0(x) =

∫
R2

∂xj
(x− y)⊥

|x− y|2+2α

[
φ0(Λ−1

β (z−t,y))− φ0(Λ−1
β (y))

]
dy

=

∫
R2\B1/2(x)

∂xj
(x− y)⊥

|x− y|2+2α

[
φ0(Λ−1

β (z−t,y))− φ0(Λ−1
β (y))

]
dy

when (t, x) ∈ [0, 1
2C

]× [−1, 1]× (0, 1]. From this, (3.3), and (3.4) we see that after increasing
C (it still only depends on α), we obtain

∂x2v1(t, x) ≥ C−1x−2α
2 − C (3.7)

and
max

{
∂x1v1(t, x), ∂x2v2(t, x), x−1

2 ∂x1v2(t, x)
}
≤ C (3.8)

for (t, x) ∈ [0,min{ 1
2C
, T}]× [−1, 1]× (0, 1], where the bound on x−1

2 ∂x1v2(t, x) also uses

∂x1v2(t, x)− ∂x1v0
2(x)

=

∫
R×(−∞,x2]

(
∂x1

x1 − y1

|x− y|2+2α
− ∂x1

x1 − y1

|x̄− y|2+2α

)[
φ0(Λ−1

β (y))− φ0(Λ−1
β (z−t,y))

]
dy.

Let us now assume that θ ∈ L∞([0, T ];Xβ) is a classical solution to (1.1) with initial datum
given by (3.1) and (3.2), with some T ∈ (0, 1] and some an to be determined later. That
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is, θ̃(t, x) := θ(t,Λβ(x)) is Lipschitz in x with some constant L. We extend θ oddly onto
[0, T ]× R2, let

u(t, x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
θ(t, y)dy (3.9)

be the velocity corresponding to θ, and define zt,x as above. Now θ(t, x) = θ0(z−t,x) shows
that u = v + w, where v is from (3.6) and

w(t, x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
φ∞(Λ−1

β (z−t,y))dy.

Since (3.7) and (3.8) hold by Lemma 2.1 and will yield the desired shearing dynamic, we only
need to show that w will not distort it too much at small times when the an are small.

From (2.17) we see that there is Tθ ∈ (0,min{ 1
2C
, T}] (depending on α, T, L) such that

zt,x2 x−1
2 ∈ [2−1, 2] (3.10)

for all (t, x) ∈ [0, Tθ] × R × R+. This, (λ−1
β )′ ≥ 1, and z−t,· being measure-preserving show

that there is C ′ <∞ such that if x, x′ ∈ R× (0, λβ(21−4N)] for some N ≥ 1, then

|w(t, x)− w(t, x′)| ≤ C ′
N−1∑
n=1

a3
nλβ(2−4n−3)−2−2α|x− x′|+ C ′

∞∑
n=N

a2−2α
n (3.11)

for all t ∈ [0, Tθ]. This is because y2 ≥ λβ(2−4n−2) when Λ−1
β (z−t,y) ∈ B2−4n−1((0, 2−4n)), due

to (3.10) and convexity of λβ, which means that

min{|x− y|, |x′ − y|} ≥ λβ(2−4n−2)− λβ(2−4n−3) ≥ λβ(2−4n−3)

for such y when n ≤ N − 1, while for n ≥ N we simply used the bound∣∣∣∣∣
∫
R2

(x− y)⊥

|x− y|2+2α
anφ1

(
Λ−1
β (z−t,y)− (0, 2−4n)

an

)
dy

∣∣∣∣∣ ≤ an

∫
Ban (0)

|y|−1−2αdy ≤ C ′′a2−2α
n .

If we pick an := a2−8n/(1−2α)2 with small enough a ∈ (0, (1−β)1/(1−β)] (note that then also
an ≤ λβ(2−4n−1) because 0 ≤ β < 2α < 1), then for any N ≥ 1 we obtain

|w(t, x)− w(t, x′)| ≤ |x− x′|+ a
(3−2α)/2
N (3.12)

whenever t ∈ [0, Tθ] and x, x′ ∈ R × (0, λβ(21−4N)] (we decreased the power of aN here just
to remove C ′). In fact, when N = 1 we can clearly even take any x, x′ ∈ R× R+.

We will also need a better estimate on w2(t, x) − w2(t, x′) when x2 = x′2. Oddness of
φ∞(Λ−1

β (z−t,y)) in y2 shows that the contribution of the nth summand in (3.2) and of its
reflection across the x1 axis to ∂x1w2(t, x) is∣∣∣∣∣

∫
R2

(
∂x1

y1 − x1

|x− y|2+2α
− ∂x1

y1 − x1

|x̄− y|2+2α

)
anφ1

(
Λ−1
β (z−t,y)− (0, 2−4n)

an

)
dy

∣∣∣∣∣
≤ C ′′a3

nλβ(2−4n−3)−3−2αx2

when n ≤ N − 1 and x ∈ R× (0, λβ(21−4N)]. Then, similarly to (3.12), we obtain

|w2(t, x)− w2(t, x′)| ≤ x2|x− x′|+ a
(3−2α)/2
N
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when also x2 = x′2 (and a > 0 is small enough), which combines with (3.12) to show that

|w2(t, x)− w2(t, x′)| ≤ |x2 − x′2|+ max{x2, x
′
2}|x1 − x′1|+ 2a

(3−2α)/2
N (3.13)

whenever t ∈ [0, Tθ] and x, x′ ∈ R× (0, λβ(21−4N)].
From (3.7), (3.8), (3.12), and (3.13) we see that for any n ≥ 1, and all t ∈ [0, Tθ] and

x, x′ ∈ [−1, 1]× (0, λβ(21−4n)] with x2 ≥ x′2, we have the bounds

u1(t, x)− u1(t, x′) ≥ C−1x−2α
2 (x2 − x′2)− 3C|x− x′| − a(3−2α)/2

n (3.14)

and

|u2(t, x)− u2(t, x′)| ≤ 3C|x2 − x′2|+ 3Cx2|x1 − x′1|+ 2a(3−2α)/2
n . (3.15)

We now take yn := (0, λβ(2−4n)) and y′n := (an, λβ(2−4n)−2bn), with bn := 2−2(2α+β)n/(1−β)an.
From (3.10) we see that for t ∈ [0, Tθ] we have

max{zt,yn2 , z
t,y′n
2 } ≤ 2λβ(2−4n) ≤ λβ(21−4n),

so (3.14) and (3.15) hold with (x, x′) = (zt,yn , zt,y
′
n) when t ∈ [0, Tθ]. Let

Tn := min{Tθ, T ′n, T ′′n},

with T ′n ≥ 0 the first time when z
T ′n,yn
1 = z

T ′n,y
′
n

1 and T ′′n ≥ 0 the first time when z
T ′′n ,yn
2 −zT

′′
n ,y
′
n

2 /∈
(bn, 3bn) (we let T ′n :=∞ resp. T ′′n :=∞ if there is no such time). From (3.14) we see that

u1(t, zt,yn)− u1(t, zt,y
′
n) ≥ (2C)−1λβ(21−4n)−2αbn and z

t,y′n
1 − zt,yn1 ∈ [0, an] (3.16)

when t ∈ [0, Tn] and n is large enough because bn ≥ 2Cλβ(21−4n)2α(3C(an + 3bn) + an) for
large n (note that bn ≤ an). Then (3.16) yields

Tn ≤ an2Cλβ(21−4n)2αb−1
n ≤ 21+1/(1−β)C2−2(2α−β)n/(1−β) → 0, (3.17)

so Tn < Tθ for large n. Moreover, if Tn = T ′′n for large enough n, then (3.15) and (3.16) yield

Tn ≥ bn
(
9Cbn + 3Cλβ(21−4n)an + 2a(3−2α)/2

n

)−1 → (9C)−1,

which cannot hold for any large enough n by (3.17). Hence Tn = T ′n for all large n, which
means that |zTn,yn − zTn,y′n| ≤ 3bn. Since

θ̃(Tn,Λ
−1
β (zTn,yn)) = θ0(yn) = 1 + an and θ̃(Tn,Λ

−1
β (zTn,y

′
n)) = θ0(y′n) = 1,

we see from this and (3.10) that a Lipschitz constant for θ̃(Tn, ·) on R× R+ is no less than

an
(
3bnλ

′
β(2−4n−1)−1

)−1
= 3−1(2− 2β)β/(1−β)22(2α−β)n/(1−β) →∞

for all large n. But this contradicts our hypothesis that θ̃ is Lipschitz in x on [0, T ]×R×R+.
The proof for β ∈ [0, 2α) is thus finished.

Case β ∈ (1 − 2α, 1). We use here a similar approach as for β < 2α, but it will be more
complicated due the fact that this time the supports of φ∞ and ∇φ0 will have to touch. Since
now β ≤ 1−2α does not hold, the bound (2.3) will be too weak to control ∇ũ, and so the fast
shearing dynamic will be happening in the vertical direction. However, (2.3) in fact shows

that this dynamic will only be fast in the scaling of θ̃, and it will therefore be sufficient (as
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∇θ0 = (1, 0) ∇θ0 = (–1, 0)

∇θ0 = (0, –1)

θ0 = 0θ0 = 1

∇θ0 = (0, 1)

Figure 2. Function θ0 for β > 1− 2α, with φ∞ ◦ Λ−1
β supported on the “ellipses”.

well as convenient) to let the background φ0 be Lipschitz on all of R2 in the scaling of θ. So
now let

φ0(x) := min
{

1, d
(
x,R2 \ ([−3, 0]× [0, 3])

)}
for x ∈ R× R+, let again φ1(x) := max{0, 1− |x|}, and with some an ∈ (0, 2−4n−1] let

θ̃0 := φ0 ◦ Λβ + φ∞ and θ0 := θ̃0 ◦ Λ−1
β = φ0 + φ∞ ◦ Λ−1

β ∈ Xβ, (3.18)

where now

φ∞(x) :=
∞∑
n=1

an
n
φ1

(
x− (λβ(2−4n), 2−4n)

an

)
. (3.19)

Then θ̃0 is again Lipschitz with constant 1 because λ′β ≤ 1. We will show that when
the an are small enough, then a solution θ ∈ L∞loc([0, Tθ0);Xβ) to (1.1) with initial datum
θ0 cannot be a limit of solutions θn0 obtained by truncating the sum in (3.19) at n = n0

(whose initial data converge to θ0 in Xβ) because the Lipschitz constants of the functions

θ̃n0(t, x) := θn0(t,Λβ(x)) on [0, T ]×R×R+ diverge to ∞ for any T > 0. The reason for this
will now be that ∂x1u2(t, x) ∼ x1−2α

2 for small t ≥ 0 and small x1 ∼ x2 > 0 (with the other
three partial derivatives of u sufficiently controlled), which together with (2.13) will result in
∂x1ũ2(t, x) becoming arbitrarily large near the origin at small times and hence in fast vertical
shearing of the “cap” functions from the series in (3.19).

Again extend θ0, φ0, φ∞ oddly onto R2. Then φ0 and φ∞ are Lipschitz, and so the velocity

v0(x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
φ0(y)dy,

generated by only φ0 is also Lipschitz with some constant C by the argument in the proof of
(2.2). Moreover, the simple form of ∂x1φ0 and easy cancellations due to oddness in x2 yield

∂x1v
0
2(x) = −

∫
R2

∂x1φ0(x− y)
y1

|y|2+2α
dy =

∫ x1+1

x1

∫ x1−y1+x2

x1−y1−x2

y1

|y|2+2α
dy2dy1 + A1
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when x1, x2 ≥ 0, where A1 is the integral of y1
|y|2+2α over the region

{y1 ∈ [x1 + 2, x1 + 3] & y2 ∈ [x1 − y1 − x2, x1 − y1 + x2]}

minus the integral of y1
|y|2+2α over

{y1 ∈ [x1, x1 + 1] ∪ [x1 + 2, x1 + 3] & y2 ∈ [y1 − x1 − 3− x2, y1 − x1 − 3 + x2]}.

Since these regions are distance more than 1 from the origin and have total area 6x2, we get

∂x1v
0
2(x) ≥ x2(C−1|x|−2α − C) (3.20)

for x ∈ [0, 1]2 and some C ≥ 1. As we noted above, we also have

‖∇v0‖L∞ ≤ C. (3.21)

Lemma 2.1 again applies uniformly to all solutions θ as above (let us call the constant in
it again C). So consider any divergence-free u on [0, T ]×R2 for some T ∈ (0, 1

10C
] satisfying

u(t, x1,−x2) = (u1(t, x),−u2(t, x)),

sup
t∈[0,T ]

‖u(t, ·)‖C1−2α(R2) ≤ C, (3.22)

and such that the left-hand sides of (2.2)–(2.5) are all finite (with the L∞ norms taken over
[0, T ]×R×R+). So ‖x−1

2 u2‖L∞ is again finite and we can define zt,x as before. Additionally,
we let

Dt :=
{
x ∈ R2

∣∣ |x2| ≥ 3(x1 − zt,01 )
}

and assume

‖∇u‖L∞(
⋃
t∈[0,T ]({t}×Dt))

≤ 3C (3.23)

as well as ∣∣∣∣u(t, x)− d

dt
zt,0
∣∣∣∣ ≤ 3C|x− zt,0| (3.24)

for all (t, x) ∈ [0, T ]× R2. Note that this implies

(1− 3Ct)|x| ≤ |zt,x − zt,0| ≤ (1 + 6Ct)|x| (3.25)

for all (t, x) ∈ [0, T ]× R2, as well as

zt,x ∈
{
x ∈ R2

∣∣ |x2| tan(3Ct) ≥ x1 − zt,01

}
⊆ Dt (3.26)

for any (t, x) ∈ [0, T ]×R−0 ×R because T ≤ 1
10C

and the set in (3.26) is the complement of a

cone in R2 with vertex at zt,0, bisector [zt,01 ,∞)× {0}, and interior half-angle shrinking with
speed 3C.

Since suppφ0 ⊆ R−0 × R, it follows that φ0(z−t,·) (i.e., φ0 transported by u for time t) is
Lipschitz with constant 1

1−3Ct
≤ 3

2
for all t ∈ [0, T ]. Therefore the gSQG velocity

v(t, x) :=

∫
R2

φ0(z−t,x−y)
y⊥

|y|2+2α
dy (3.27)

corresponding to it satisfies

‖∇v‖L∞ ≤ 2C (3.28)
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(analogously to (3.21)). We can also extend (3.20) to v via

∂x1v2(t, x)− ∂x1v0
2(x− zt,0) =

∫
R2

[
∂x1φ0(x− y − zt,0)− d

dx1

φ0(z−t,x−y)

]
y1

|y|2+2α
dy, (3.29)

at least for some (t, x). Note that suppφ0 is composed of 10 trapezoids (2 of them are
squares) such that ∇φ0 is constant in the interior of each of them, with |∇φ0| ∈ {0, 1}. This
and (3.23) show that if z−t,x−y with t ∈ [0, T ] lies inside one of these trapezoids and ∂x1φ0 = a
on that trapezoid, then | d

dx1
φ0(z−t,x−y)− a| ≤ 6Ct. It follows that the absolute value of the

parenthesis in (3.29) is at most 6Ct whenever x − y − zt,0 belongs to the same trapezoid
as z−t,x−y. Also, if z−t,x−y /∈ suppφ0, then clearly d

dx1
φ0(z−t,x−y) = 0, so the parenthesis is

0 whenever x − y − zt,0 /∈ suppφ0. This means that if we let g(x − y) be that parenthesis
when z−t,x−y and x− y− zt,0 belong to the same of the above 11 regions R1, . . . , R11 (the 10
trapezoids and R2 \ suppφ0) and 0 otherwise, then ‖g‖L∞ ≤ 6Ct and ‖g‖L1 ≤ 108Ct (since
z−t,· is measure-preserving) and so oddness of g in x2 shows∣∣∣∣∫

R2

g(x− y)
y1

|y|2+2α
dy

∣∣∣∣ =

∣∣∣∣∫
R×(−∞,x2]

g(x− y)

(
y1

|y|2+2α
− y1

|y − 2x2e2|2+2α

)
dy

∣∣∣∣ ≤ C ′′tx1−2α
2

(3.30)
for some C ′′ > 0, as in the proof of (2.3).

Let us now assume that z−t,x−y and x− y− zt,0 do not lie in the same region Rj, in which
case the parenthesis in (3.29) is only bounded by 3. Then (3.24) and (3.25) yield

|z−t,x−y − (x− y − zt,0)| ≤ 6Ct|x− y − zt,0|, (3.31)

which means that x−y−zt,0 must be within distance 6Ct|x−y−zt,0| of one of the boundaries
of the 11 regions (which are 23 straight segments, the rightmost two forming the segment
{0}× [−3, 3]). If (t, x) is such that |x2| ≤ 2(x1− zt,01 ), then the points y such that x− y− zt,0
is within distance 6Ct|x− y − zt,0| of one of the boundaries of the 11 regions form no more
than C1

√
t proportion of ∂Br(0) for any r > 0 (with some C1 > 0). Using this and the

computation that yields (3.30) shows that the contribution of the points y considered here
to the integral in (3.29) is no more than C ′′′

√
tx1−2α

2 for some C ′′′ > 0.
The above arguments and (3.20) show that there is C ′ > 0 such that

∂x1v2(t, x) ≥ x2

[(
(2C)−1 − C ′

√
t
)
x−2α

2 − C
]

(3.32)

holds when (t, x) ∈ [0, T ]× [0, 1]2 and |x2| ∈ [1
2
(x1− zt,01 ), 2(x1− zt,01 )]. This bound and (3.21)

will play the same role here as (3.7) and (3.8) did before.
We now again assume that θ ∈ L∞(0, T ;Xβ) is a solution to (1.1) with initial datum given

by (3.18) and (3.19), with some T ∈ (0, 1
10C

] and some an as above. That is, θ̃(t, x) :=
θ(t,Λβ(x)) is Lipschitz in x with some constant L. Let us also assume that θ is the limit
of classical solutions θn0 with initial data θ0,n0 obtained by truncating the sum in (3.19) at
n = n0 (we call that sum φn0). Note that θ0,n0 → θ0 in Xβ.

Fix now any n0, extend θn0 oddly onto [0, T ]× R2, and let

u(t, x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
θn0(t, y)dy
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be the velocity corresponding to θn0 , and define zt,x as above. (Then θn0 is also a unique
classical solution to (1.1) on R2 for at least a short time because θ0,n0 is Lipschitz. But this
might cease to be the case at some point, so we just assume that θn0 ∈ L∞([0, T ];Xβ) is some
solution.) Again θn0(t, x) = θ0,n0(z

−t,x) shows that u = v + w, where v is from (3.27) and

w(t, x) :=

∫
R2

(x− y)⊥

|x− y|2+2α
φn0(Λ

−1
β (z−t,y))dy.

One can then show as before that if an := 2−γn for a large enough γ, then w will not distort
the dynamic provided by v much. First, (2.17) again gives (3.10) for times t ∈ [0, Tθ] for
some Tθ ∈ (0, T ], but now we obtain it with interval [8

9
, 9

8
] instead of [1

2
, 2]. We then again

conclude (3.13) when γ is large enough, and similarly also

|w(t, x)− w(t, x′)| ≤ |x− x′| (3.33)

for all t ∈ [0, Tθ] and x, x′ ∈ Dt,n0 := Dt ∪ (R× [−λβ(2−4n0−3), λβ(2−4n0−3)]) as long as

suppφn0(Λ
−1
β (z−t,·)) ⊆ Et,n0 :=

{
x ∈ R2

∣∣∣∣ |x2| ∈
[

1

2
(x1 − zt,01 ), 2(x1 − zt,01 )

]}
. (3.34)

Here γ, Tθ can be made uniform in n0 because so are all the above estimates.
If now τn0 > 0 is the first time when suppφn0(Λ

−1
β (z−t,·)) does not lie within Et,n0 or

suppφ0(z−t,·) does not lie within Dt,n0 (τn0 must be positive because n0 < ∞ and (3.22)
holds), then on the time interval [0,min{τn0 , Tθ}] we have (3.33) when x, x′ ∈ Dt,n0 , which
means that similarly to (2.9) we can conclude

d

dt
‖φ0(z−t,·)‖W 1,∞ ≤ C ′′‖φ0(z−t,·)‖W 1,∞

(
‖φ0(z−t,·)‖W 1,∞ + 1

)
.

This is because φ0(z−t,·) is transported by u = v + w, where v is generated by φ0(z−t,·) and
(3.33) holds (since φ0 is Lipschitz on R2, we do not need to use the space Xβ here). This
C ′′ is independent of n0, so there is n0-independent T ′θ ∈ (0, Tθ] such that (3.28) holds for
t ∈ [0,min{τn0 , T

′
θ}]. But then so do (3.23) and (3.24) because (3.13) and (3.33) hold, and

(3.24) means that τn0 ≥ T ′θ because T ′θ ≤ T ≤ 1
10C

.
Hence the above setup holds on the time interval [0, T ′θ], and in particular (3.13), (3.28),

and (3.32) hold on Et,n0 for all t ∈ [0, T ′θ], and suppφn0(Λ
−1
β (z−t,·)) ⊆ Et,n0 for all t ∈ [0, T ′θ].

We now take

y := (λβ(2−4n0), λβ(2−4n0)) and y′ :=
(
λβ(2−4n0) + 2n−2

0 an0 , λβ(2−4n0 − an0)
)
,

(so now we have n−2
0 an0 in place of bn). This means that

y2 − y′2 ≈ λ′β(2−4n0)an0 = (1− β)β/(1−β)2−4n0β/(1−β)an0 � n−2
0 an0 ,

so that, for instance, (3.13) and (3.32) yield for all large n0

|w2(0, y′)−w2(0, y)| ≤ C ′
∣∣2−4n0β/(1−β)an0 + 2−4n0/(1−β)n−2

0 an0 + a(3−2α)/2
n0

∣∣ ≤ C ′′
∣∣2−4n0β/(1−β)an0

∣∣
(provided γ is large enough) as well as

v2(0, y′)− v2(0, y) ≥ (4C)−12−4n0(1−2α)/(1−β)n−2
0 an0 .
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Similarly to the case β ∈ [0, 2α), the above properties of v, w ensure that this relationship of
speeds persists for a while at points zt,y

′
and zt,y, and specifically show that at some time

Tn0 = O
(

2−4n0β/(1−β)an0

(
2−4n0(1−2α)/(1−β)n−2

0 an0

)−1
)

= O
(
n2

02−4n0(β+2α−1)/(1−β)
)
→ 0

we will have

z
Tn0 ,y

′

1 − zTn0 ,y1 ∈
[
n−2

0 an0 , 3n
−2
0 an0

]
and z

Tn0 ,y
′

2 = z
Tn0 ,y
2

whenever n0 is large enough. But since θ0,n0(y) = n−1
0 an0 and θ0,n0(y

′) = 0, it follows that a

Lipschitz constant for θ̃n0(Tn0 , ·) on R×R+ is no less than n0

3
. Since Tn0 < T for all large n0,

this contradicts our hypothesis that θn0 → θ in L∞([0, T ];Xβ) and the proof is finished.

4. Proof of Theorem 1.1(ii)

The basic setup of our finite time singularity example for each α ∈ (0, 1
4
] and β ∈ [2α, 1−2α]

will be closely related to that from [21], where the corresponding patch problem on R× R+

was studied. As mentioned in the introduction, a relevant local regularity result in the latter
setting was only obtained for α ∈ (0, 1

24
), and the finite time blow-up argument worked on an

only slightly larger interval. We perform here a much more careful analysis in this setting,
which allows us to capture the full range α ∈ (0, 1

4
], and applies to both (1.1) and the patch

problem (hence it also proves the first claim in Theorem 1.3).
Let us fix any α ∈ (0, 1

4
] and β ∈ [2α, 1− 2α] (the particular choice of β will be completely

irrelevant here), and let ε > 0 be a small number to be determined later. Let D+ := R+×R+,
and consider any (smooth if one desires) initial datum θ0 ∈ Xβ that is odd in x1 and satisfies

χΩ′ ≤ χD+θ0 ≤ χΩ, (4.1)

where Ω := (ε, 3) × (0, 3) and Ω′ := (2ε, 2) × (0, 2). Assume that Tθ0 = ∞, and extend the
corresponding (unique) solution θ onto R2 oddly in x2. Then θ is odd in both x1 and x2, and
transported by u from (3.9) on the time interval [0,∞). Note also that from (2.2), (2.17),
and u1(t, 0, s) = 0 for all (t, s) ∈ [0,∞)×R (the latter due to odd symmetry in x1), we have
D+ = {zt,x |x ∈ D+} for all t ≥ 0 when zt,x solves d

dt
zt,x = u(t, zt,x) and z0,x := x, and hence

also 0 ≤ sgn(x1x2) θ(t, x) ≤ 1 for all (t, x) ∈ [0,∞)× R2. Similarly, for all t ≥ 0 we have

Ωt = {zt,x |x ∈ Ω0} and D+ \ Ωt = {zt,x |x ∈ D+ \ Ω0} (4.2)

when we let

Ωt := {x ∈ D+ | θ(t, x) = 1}.
We will now show that if ε > 0 is small enough, then we obtain

lim
t↑T
‖∂x1θ(t, ·)‖L∞(R×R+) =∞

for some T < ∞, yielding a contradiction with θ ∈ L∞loc([0,∞);Xβ) (which follows from
Tθ0 = ∞ and Theorem 1.1(i)) and thus proving the claim. We will do this by showing that
limt↑Tε d(0,Ωt) = 0 for Tε := 25(3ε)2α, so that blow-up of ∂x1θ no later than by time Tε then
follows from θ(t, 0, s) = 0 for all t, s > 0. Finally, this claim will be proved by showing that
for all t ∈ [0, Tε) we have Ωt ⊇ Lt, where

Lt := {x ∈ D+ |x1 ∈ (Xt, 1) & x2 ∈ (0, x1)} (4.3)
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Lt

Ω′′

0 ε′Xt 1

It

Jt

Figure 3. Region Lt and segments It and Jt.

is a growing trapezoid with Xt :=
[
(3ε)2α − t

25

]1/2α
(and so XTε = 0). Note that X0 = 3ε, so

Ω0 ⊇ Ω′ ⊇ L0, and for all t ∈ [0, Tε] we have

d

dt
Xt = −(50α)−1X1−2α

t . (4.4)

Let now d(t) := d(D+ \ Ωt, Lt), which is continuous on [0, Tε) by (2.1) and (4.2). So if
Ωt ⊇ Lt does not hold for some t ∈ [0, Tε), there is a first time t′ ∈ [0, Tε) such that d(t′) = 0.
Then t′ > 0 because d(0) ≥ ε, as well as Lt ⊆ Ωt for all t ∈ [0, t′].

Let now ε′ > 0 be arbitrary. Then (2.1), (4.1), and limε→0 Tε = 0 show that for all small
enough ε ∈ (0, ε

′

3
] (their interval only depends on ε′ and α) we have Ω′′ := (ε′, 3

2
)× (0, 3

2
) ⊆ Ωt

for all t ∈ [0, Tε). This and d(t′) = 0 imply that D+ \ Ωt′ ∩ Lt′ must contain a point from
It′ ∪ Jt′ , where

It := {(Xt, s) | s ∈ [0, Xt]} and Jt := {(s, s) | s ∈ [Xt, ε
′]}

(so It ∪ Jt is the part of ∂Lt lying outside Ω′′, see Figure 3). We will show that if ε′ > 0
is small enough (depending only on α) and t ∈ [0, t′], then u(t, x) points (non-tangentially)
outside of Lt for all x ∈ Jt, and u1(t, x) ≤ −(45α)−1X1−2α

t for all x ∈ It. This of course makes
it impossible for D+ \ Ωt′ and Lt′ to touch at time t′, in view of (4.3) and (4.4), yielding a
contradiction.

The above is the basic strategy from [21], which was there applied with Ωt being a solution
patch at time t (with θ ≡ 1 on Ωt and 0 on D+ \ Ωt, and with a second patch where θ ≡ −1
lying in R− × R+, positioned symmetrically to Ωt). The crucial estimates on u(t, ·) on the
set It ∪ Jt mentioned above were established in [21] for only small enough α > 0, and here
we will obtain them for the full local well-posedness range α ∈ (0, 1

4
].

Estimating the velocity on It. Let us start with x = (Xt, x2) ∈ It for some t ∈ [0, t′] (the
case x ∈ Jt will be simpler), and we will show that Lt ⊆ Ωt guarantees

u1(t, x) ≤ −(45α)−1x1−2α
1 (4.5)

as long as ε′ > 0 was chosen small enough (here of course x1 = Xt).
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Odd symmetry of θ across both axes shows that

u1(t, x) =

∫
D+

K1(x, y)θ(t, y)dy, (4.6)

where

K1(x, y) :=
x2 − y2

|x− y|2+2α
− x2 − y2

|x− ỹ|2+2α
− x2 + y2

|x− ȳ|2+2α
+

x2 + y2

|x+ y|2+2α
, (4.7)

with ȳ := (y1,−y2) and ỹ := (−y1, y2). Let also

A±x := {y ∈ D+ | ±K1(x, y) > 0}.

Since 0 ≤ θ ≤ 1 on D+, an upper bound on u1(t, x) can be obtained by replacing θ(t, ·) in
(4.6) by 1 on A+

x ∪ L′x and by 0 on A−x \ L′x, for any L′x ⊆ Lt (because Lt ⊆ Ωt). One should
think of A+

x being the “bad” set for an upper bound on u1(t, x) and A−x the “good” set, and
our task is complicated by the fact that a precise identification of A±x is not easy. We will
therefore use a slightly weaker bound, obtained by replacing θ(t, ·) by 1 on A+

x ∪L′x ∪L′′x and
by 0 on A−x \ (L′x ∪ L′′x), as well as K1(x, y) by

x2 − y2

|x− y|2+2α
− x2 − y2

|x− ỹ|2+2α
(≥ max{K1(x, y), 0} when y2 ≤ x2)

for all y ∈ L′′x, with some sets L′x ⊆ Lt and L′′x ⊆ R+ × (0, x2). After expanding the integral
from (4.6) onto R2, this upper bound on u1(t, x) becomes∫

Sx∪(−Sx)∪L′′x

x2 − y2

|x− y|2+2α
dy −

∫
S̄x∪S̃x∪L̃′′x

x2 − y2

|x− y|2+2α
dy, (4.8)

where Sx := (A+
x ∪ L′x) \ L′′x. We now make the specific choice

L′x := {y ∈ D+ | y1 ∈ (x1, 1) & y2 ∈ (0, y1 − x1 + x2)} ⊆ Lt,

L′′x :=
[
((0, x1] ∪ [1,∞))× (0, x2)

]
\ L′′′x ,

where

L′′′x := {y ∈ D+ | y1 ∈ (x1 − x2, x1) & y2 ∈ (0, y1 − x1 + x2)}
(recall that x2 ∈ [0, x1]). These regions are drawn in Figure 4, with some being split into
several sub-regions for later use. So, for instance, L′x =

⋃4
j=1 L

′
x,j and L′′x = L′′x,1∪L′′x,2, where

L′′x,2 := [1,∞)× (0, x2) lies far to the right and is not pictured.
Our first crucial observation is that

L′′′x ⊆ A+
x ⊆ L′x ∪ L′′x ∪ L′′′x , (4.9)

which means that Sx = L′x ∪ L′′′x (note that L′x, L
′′
x, L

′′′
x are pairwise disjoint). The second

inclusion in (4.9) holds because L′x ∪ L′′x ∪ L′′′x ⊇ R+ × (0, x2) and for any y ∈ R+ × [x2,∞)
we have

x2 − y2

|x− y|2+2α
≤ x2 − y2

|x− ỹ|2+2α
and

x2 + y2

|x− ȳ|2+2α
≥ x2 + y2

|x+ y|2+2α
.

The first inclusion in (4.9) is due to the following lemma, with (x, b1, b2) in the lemma being
(x− y, x1, x2) here (note that for any y ∈ L′′′x we have 0 < x1 − y1 ≤ x2 − y2 ≤ x2 ≤ x1). We
also note that if x2 = 0, then (4.9) holds trivially because all the sets in it are empty.
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0

x

x1 2x1 3x1−x1

x2

L′′′x

L̄′′′x

L̃′′′x

−L′′′x

L′′x,1L̃′′x,1 L′x,1 L′x,2

L′x,3

L′x,4

L̄′x,1

L̄′x,2

L̄′x,3

L̃′x

−L′x

Figure 4. Subregions and reflections of L′x, L
′′
x, L

′′′
x for u1 (not pictured are

L′′x,2 = [1,∞)× (0, x2), L̃′′x,2 = (−∞, 1]× (0, x2), and parts of L′x, L̄
′
x, L̃

′
x,−L′x).

Lemma 4.1. Whenever α ≥ 0, b1, b2 > 0, and 0 < x1 ≤ x2 < min{b1, b2}, we have

x2

|(x1, x2)|2+2α
− x2

|(2b1 − x1, x2)|2+2α
− 2b2 − x2

|(x1, 2b2 − x2)|2+2α
+

2b2 − x2

|(2b1 − x1, 2b2 − x2)|2+2α
> 0.

Proof. Letting c := b1
b2

and y := x
b2

, this claim becomes equivalent to

y2

|(y1, y2)|2+2α
− 2− y2

|(y1, 2− y2)|2+2α
>

y2

|(2c− y1, y2)|2+2α
− 2− y2

|(2c− y1, 2− y2)|2+2α
(4.10)

for 0 < y1 ≤ y2 < min{c, 1}. If we let f(y1) be the left-hand side of (4.10), then we need to
show f(y1) > f(2c− y1). Direct differentiation of f shows that

sgn f ′(s) = sgn
(
(2− y2)(s2 + y2

2)2+α − y2(s2 + (2− y2)2)2+α
)
,

from which it easily follows that f ′ vanishes at a single s′ > 0, as well as that f is decreasing
on [0, s′] and increasing on [s′,∞) (both strictly). Since lims→∞ f(s) = 0 and 2c − y1 > y1,
it suffices to show that f(y2) ≥ 0 because then y1 ≤ y2 implies f(y1) > f(s) for all s > y1.
That is, it suffices to show that

y−1−2α
2 − (2− y2)(y2

2 − 2y2 + 2)−1−α ≥ 0

for all y2 ∈ (0, 1). Equality holds when y2 = 1, and a direct computation shows that the
derivative of the left-hand side is no more than

−(1 + 2α)y−2−2α
2 + (y2

2 − 2y2 + 2)−1−α < 0

for all y2 ∈ (0, 1) (note that −2y2 + 2 < 0). Hence the claim follows. �

Since Sx = L′x ∪ L′′′x , the bound (4.8) becomes∫
L′x∪(−L′x)∪L′′′x ∪(−L′′′x )∪L′′x

x2 − y2

|x− y|2+2α
dy −

∫
L̄′x∪L̃′x∪L̄′′′x ∪L̃′′′x ∪L̃′′x

x2 − y2

|x− y|2+2α
dy. (4.11)
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Because the first integrand at (y1, y2) equals the second integrand at (2x1 − y1, y2), and vice
versa, the integrals over the regions contained in R− × R cancel with those over the images
of these regions under the mapping y 7→ (2x1− y1, y2) (in the notation from Figure 4, region
L̃′x∪ L̃′′′x ∪ L̃′′x,1∪ L̃′′x,2 cancels with L′x,3∪L′x,2∪L′′x,2 and (−L′x)∪(−L′′′x ) cancels with L̄′x,3∪ L̄′x,2;
these regions are marked by bold lines). Each of these images is a region contained in the
integration domain of the integral not containing the original region (whence the cancelation),
except for the subregions [(−1,−1+2x1)×(x2, 1)]∩L̃′x and [(−1,−1+2x1)×(−1, 0)]∩(−L′x),
whose images lie in (1,∞)× (R \ [0, x2]) and so the integrals over them do not get canceled.
However, since 0 < x2 ≤ x1 ≤ 3ε � 1 and both these regions have areas ≤ 2x1, the
contribution of the integrals over them to (4.11) will be bounded above by 16x1 and hence
negligible in the proof of (4.5) because α > 0. After this cancellation we are left with regions

B := (0, 2x1)× (0, x2),

G := {y ∈ R2 | y2 > x2 & y1 ∈ (y2 − x2 + x1, y2 − x2 + 3x1) & y1 < 1},
G− := {y ∈ R2 | y2 < 0 & y1 ∈ (−y2 − x2 + x1,−y2 − x2 + 3x1) & y1 < 1}

(so B = L′′x,1 ∪ L′′′x ∪ L′x,1, G = L′x,4, and G− = L̄′x,1 ∪ L̄′′′x in Figure 4), and this all yields

u1(t, x) ≤
∫
B∪G

x2 − y2

|x− y|2+2α
dy −

∫
G−

x2 − y2

|x− y|2+2α
dy + 16x1.

Here the contribution of the “bad” region B is positive, while that of the “good” regions
G,G− is negative. To simplify the following computations, we can replace G,G− by regions
G∗, G

−
∗ that are defined identically but without the constraint y1 < 1. This again changes

the estimate by less than Cαx1 for some Cα depending only on α (and, in particular, not on
x), so we obtain the bound

u1(t, x) ≤
∫
B∪G∗

x2 − y2

|x− y|2+2α
dy −

∫
G−∗

x2 − y2

|x− y|2+2α
dy + (Cα + 16)x1.

The change of variables z := y−x
x1

turns this bound into

−u1(t, x)x2α−1
1 ≥

∫
Gb∪G−b

|z2|
|z|2+2α

dz −
∫
B−b

|z2|
|z|2+2α

dz − (Cα + 16)x2α
1 ,

where b := x2
x1

and the sets B−b , Gb, G
−
b (from the following lemma, also drawn in Figure 5)

are the images of B,G∗, G
−
∗ under this change of variables. Estimate (4.5) now follows for all

small enough ε′ > 0 (recall that x1 ≤ 3ε ≤ ε′) by the key Lemma 4.2, which we prove after
finishing the proof of Theorem 1.1(ii).

Lemma 4.2. If α ∈ (0, 1
4
] and for any b ∈ [0, 1] we let

B−b := (−1, 1)× (−b, 0),

Gb := {x ∈ R2 |x2 > 0 & x1 ∈ (x2, x2 + 2)},
G−b := {x ∈ R2 |x2 < −b & x1 ∈ (−x2 − 2b,−x2 − 2b+ 2)},

then

inf
b∈[0,1]

{∫
Gb∪G−b

|x2|
|x|2+2α

dx−
∫
B−b

|x2|
|x|2+2α

dx

}
≥ 1

40α
. (4.12)
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G−b

Figure 5. The regions B−b , Gb, G
−
b for u1.

This concludes the case x ∈ It. We note that the only place where the above analysis is
not optimal is the replacement of K1 by the difference of its first two terms on L′′x,1 instead
of identification of the set A+

x ∩ L′′x,1 (the set L′′x,2 ⊆ [1,∞) × R+ is irrelevant because its
contribution is of lower order and hence negligible here). While picking L′x = Lt for all x
may seem to yield further improvement, we in fact do have L′x = Lt when x = (Xt, Xt) and
so b = 1 above, which will be the most crucial value in the proof of Lemma 4.2.

As for Lemma 4.2, if we let Vα,b be the value inside the infimum in (4.12), then we need to
obtain infb∈[0,1] Vα,b > 0 for our blow-up analysis to work. The proof of Lemma 4.2 evaluates
Vα,1 exactly (we could also do it for Vα,b with b ∈ [0, 1) but the resulting formulas are quite
daunting to deal with, so we instead obtain a much more convenient lower bound) and yields

2α

4− 2−α
Vα,1 =

∫ 1

0

dq

(q2 + 1)α
− 2 + 2−α − 21−2α

(1− 2α)(4− 2−α)
.

This is decreasing in α, so to cover the full region α ∈ (0, 1
4
], we certainly need this number to

be positive for α = 1
4
. It indeed is, but barely so: it is approximately 0.937− 0.903 = 0.034.

It in fact becomes negative around α = 0.257, which illustrates why showing L′′′x ⊆ A+
x in

Lemma 4.1 is also crucial for our analysis to apply to all α ∈ (0, 1
4
]. If we instead included

L′′′x in L′′x, this would replace L̄′′′x by L̄′x,2 in the region G− and ultimately lower the upper end

of the interval of α for which the resulting Vα,1 is positive below 1
4
.

Estimating the velocity on Jt. Now consider x = (x∗, x∗) ∈ Jt for some t ∈ [0, t′], so
x∗ ∈ [Xt, ε

′]. Since

Ωt ⊇ Lt ⊇ Lx := {y ∈ Lt | y1 > x1},
the proof from the case x ∈ It, with Lt replaced by Lx, again yields (4.5). Since we need to
show that u(t, x) points (non-tangentially) outside Lt at x, it now suffices to show that

u2(t, x) ≥ 0 (4.13)

when ε′ > 0 is small enough.
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We proceed similarly as for x ∈ It, but the argument will this time be a little simpler. Odd
symmetry of θ in both x1 and x2 shows that

u2(t, x) =

∫
D+

K2(x, y)θ(t, y)dy, (4.14)

where

K2(x, y) :=
y1 − x1

|x− y|2+2α
− y1 − x1

|x− ȳ|2+2α
+

y1 + x1

|x− ỹ|2+2α
− y1 + x1

|x+ y|2+2α
, (4.15)

and now we let

A±x := {y ∈ D+ | ±K2(x, y) > 0}.
Since 0 ≤ θ ≤ 1 on D+, a lower bound on u2(t, x) can be obtained by replacing θ(t, ·) in
(4.14) by 1 on A−x ∪ Lx and by 0 on A+

x \ Lx (so now we just pick L′x = Lx) because A−x is
now the “bad” set for a lower bound. We will again use a slightly weaker bound, replacing
θ(t, ·) by 1 on A−x ∪ Lx ∪ L′′x and by 0 on A+

x \ (Lx ∪ L′′x), as well as K2(x, y) by

y1 − x1

|x− y|2+2α
− y1 − x1

|x− ȳ|2+2α
(≤ min{K2(x, y), 0} when y1 ≤ x1)

for all y ∈ L′′x := (0, x1)×R+ (so this time there will be no L′′′x and no need for Lemma 4.1).
After expanding the integral from (4.14) onto R2, this lower bound on u2(t, x) becomes∫

Sx∪(−Sx)∪L′′x

y1 − x1

|x− y|2+2α
dy −

∫
S̄x∪S̃x∪L̄′′x

y1 − x1

|x− y|2+2α
dy, (4.16)

where Sx := (A−x ∪ Lx) \ L′′x. But since now A−x ⊆ L′′x due to

y1 − x1

|x− y|2+2α
≥ y1 − x1

|x− ȳ|2+2α
and

y1 + x1

|x− ỹ|2+2α
≥ y1 + x1

|x+ y|2+2α

for all y ∈ [x1,∞)× R+, it follows from Lx ∩ L′′x = ∅ that Sx = Lx. The regions Lx, L
′′
x, and

their reflections are drawn in Figure 6 (recall that x1 = x2 = x∗).
So (4.16) becomes∫

Lx∪(−Lx)∪L′′x

y1 − x1

|x− y|2+2α
dy −

∫
L̄x∪L̃x∪L̄′′x

y1 − x1

|x− y|2+2α
dy, (4.17)

Because the first integrand at (y1, y2) equals the second integrand at (y1, 2x2 − y2), and vice
versa, the integrals over the regions contained in R × R− cancel with those over the images
of these regions under the mapping y 7→ (y1, 2x2− y2) (in the notation from Figure 6, region
L̄′′x∪ L̄x cancels with L′′x,2∪Lx,2 and −L′x cancels with L̃x,1∪ L̃x,2). However, this cancellation
requires us to add the regions

B∗ := {y ∈ R2 | y1 > x∗ & y2 ∈ (min{y1, 2x∗}, y1 + 2x∗)}

and B̃∗ to Lx and L̃x, respectively (in fact, then B∗ ∩ ([1,∞)×R) and B̃∗ ∩ ((−∞,−1]×R)
will not get cancelled, but their contribution is again only O(x∗) and hence negligible). So
we have to subtract their contribution, meaning that (4.13) will follow if we can show∫

G∗∪B∪B̃∗

y1 − x1

|x− y|2+2α
dy −

∫
G̃∗∪B∗

y1 − x1

|x− y|2+2α
dy ≥ Cx∗ (4.18)



FINITE TIME SINGULARITY FOR THE GENERALIZED SQG EQUATION 25

0
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2x∗
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L′′x,1

B∗

Lx,1
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L̄′′x L̄x

B̃∗

L̃x,1

L̃x,2

−Lx

Figure 6. Subregions and reflections of Lx, L
′′
x for u2.

for all x∗ ∈ (0, ε′], for any constant C <∞ and small enough (C-dependent) ε′ > 0, where

G∗ := {y ∈ R2 | y1 > x∗ & y2 ∈ (0,min{y1, 2x∗})}
and B := (0, x∗) × (0, 2x∗) (note that the difference between G∗ ∪ G̃∗ and Lx,1 ∪ L̃x,1 from
Figure 6 is a subset of [R \ (−1, 1)]× (0, 2x∗)] and hence only contributes O(x∗) to (4.18)).

We again apply to (4.18) the change of variables z := y−x
x∗

, but first we note that the

mapping y 7→ (2x1 − y1, y2) changes the sign of the integrand, so the integral over B cancels
with that over (x∗, 2x∗) × (0, 2x∗), which means that we can remove domains B and G∗ ∩
[(x∗, 2x∗)× (0, 2x∗)] from the first integral if we also add the triangle [(x∗, 2x∗)× (0, 2x∗)]\G∗
to the second. This and the change of variables now show that (4.18) is equivalent to∫

G0∪G−0

|z1|
|z|2+2α

dz −
∫
B0∪B−0

|z1|
|z|2+2α

dz ≥ Cx2α
∗ ,

where the sets G0, G
−
0 , B0, B

−
0 are from the following lemma (also drawn in Figure 7). The

last estimate now follows for all small enough ε′ > 0 and all x∗ ∈ (0, ε] by our last key
Lemma 4.3, which we prove after the proof of Lemma 4.2.

Lemma 4.3. If α ∈ (0, 1
4
] and we let

G0 := (1,∞)× (−1, 1)

G−0 := {y ∈ R2 | y1 < −2 & y2 ∈ (−1,min{−y1 − 2, 1})},
B0 := {y ∈ R2 | y1 > 0 & y2 ∈ (y1, y1 + 2)},
B−0 := {y ∈ R2 | y1 < −2 & y2 ∈ (max{−y1 − 2, 1},−y1)},

then ∫
G0∪G−0

|x1|
|x|2+2α

dx−
∫
B0∪B−0

|x1|
|x|2+2α

dx > 0. (4.19)
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Figure 7. The regions G0, G
−
0 , B0, B

−
0 for u2.

So (4.5) and (4.13) hold whenever ε′ > 0 is small enough, which concludes the proof of
Theorem 1.1(ii) as explained before (4.5).

Proofs of the two velocity estimates. It remains to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Let I(b) be 2α times the value inside the infimum in (4.12) when G−b
is replaced by G∗b := G−b ∩ {x ∈ R2 |x1 < −x2}, which turns out to simplify the proof
significantly. This does not change the integration region when b = 1, while for b < 1 it
decreases the value inside the infimum (after being multiplied by 2α, which will also be
convenient). Note that since I is continuous on [0, 1], it suffices to consider b ∈ (0, 1].

If now G+
b , B

+
b are the reflections of G∗b , B

−
b across the x1 axis, then Gb, G

+
b , B

+
b ⊆ R×R+

and

I(b) = 2α

∫
Gb∪G+

b

x2

|x|2+2α
dx− 2α

∫
B+
b

x2

|x|2+2α
dx.

When 0 ≤ a ≤ c, then direct integration gives

2α

∫ c

a

x2

|(x1, x2)|2+2α
dx2 =

1

(x2
1 + a2)α

− 1

(x2
1 + c2)α

, (4.20)

and for 0 ≤ r ≤ s we also have∫ s

r

dx1

(x2
1 + a2)α

=

{
a1−2α

(
f
(
s
a

)
− f

(
r
a

))
a > 0,

1
1−2α

(s1−2α − r1−2α) a = 0,
(4.21)

where

f(s) :=

∫ s

0

dq

(q2 + 1)α
. (4.22)

We will use (4.20) and (4.21) repeatedly below, without saying so explicitly. We also note
that from 0 ≤ (q2)−α − (q2 + 1)−α ≤ αq−2−2α we find that there exists

µα := lim
s→∞

(
s1−2α

1− 2α
− f(s)

)
> 0, (4.23)
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which then satisfies

µα ≤
1

1− 2α
− f(1) +

∫ ∞
1

α

q2+2α
dq ≤ 1

1− 2α
− f(1) +

α

1 + 2α
. (4.24)

as well as

lim
s→∞

(
γ2α−1f(γs)− s1−2α

1− 2α

)
= −γ2α−1µα (4.25)

for any γ > 0.
First, we easily get

2α

∫
B+
b

x2

|x|2+2α
dx = 2

∫ 1

0

(
1

x2α
1

− 1

(x2
1 + b2)α

)
dx1 =

2

1− 2α
− 2b1−2αf

(
1

b

)
. (4.26)

Next, x2
1 + (x1 − 2)2 = 2((x1 − 1)2 + 1) and (4.25) yield

2α

∫
Gb

x2

|x|2+2α
dx =

∫ 2

0

(
1

x2α
1

− 2−α

x2α
1

)
dx1 +

∫ ∞
2

(
2−α

((x1 − 1)2 + 1)α
− 2−α

x2α
1

)
dx1

=
21−2α

1− 2α
− 2−αf(1)− 2−αµα

(4.27)

(here we also used that lims→∞ f
′(s) = 0). Finally, x2

1 + (x1 + 2b)2 = 2((x1 + b)2 + b2) yields

2α

∫
G+
b

x2

|x|2+2α
dx =

∫ b

−b

(
1

(x2
1 + b2)α

− 2−α

((x1 + b)2 + b2)α

)
dx1 +

∫ ∞
b

(
2−α

x2α
1

− 2−α

((x1 + b)2 + b2)α

)
dx1

= 2b1−2αf(1)− 2−αb1−2α

1− 2α
+ 2−αb1−2αµα,

where we also used (4.25). Hence we see that

I(b) =
21−2α − 2

1− 2α
− 2−α(f(1) + µα) + 2b1−2α

(
f

(
1

b

)
+ f(1)− 2−1−α

1− 2α
+ 2−1−αµα

)
for all b ∈ (0, 1], and so also

I(1) = (4− 2−α)f(1)− 2 + 2−α − 21−2α

1− 2α
. (4.28)

If we let J(c) := 1
2
I(1

c
) for c ∈ [1,∞), then

J ′(c) = (1−2α)c2α−2

(
c

(1− 2α)(c2 + 1)α
− f(c)− f(1) +

2−1−α

1− 2α
− 2−1−αµα

)
=: (1−2α)c2α−2g(c).

Since

g′(c) =
1

(1− 2α)(c2 + 1)α

(
1− 2αc2

c2 + 1
− (1− 2α)

)
=

2α

(1− 2α)(c2 + 1)1+α
≥ 0,

we see that

min
c∈[1,∞)

g(c) = g(1) =
3 · 2−1−α

1− 2α
− 2f(1)− 2−1−αµα. (4.29)
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When g(1) ≥ 0 (which happens for α not too small), then J attains its minimum at c = 1,
so we also have minb∈(0,1] I(b) = I(1). If instead g(1) < 0, then

inf
c∈[1,∞)

J(c) ≥ J(1) +

∫ ∞
1

(1− 2α)c2α−2g(1)dc = J(1) + g(1),

and so infb∈(0,1] I(b) ≥ I(1) + 2g(1). This means that

inf
b∈(0,1]

I(b) ≥ min{I(1), I(1) + 2g(1)}.

So it remains to estimate these two values. From (4.28), (4.29), and (4.24) we obtain

2α(I(1) + 2g(1)) =
2 + 21−α − 21+α

1− 2α
− µα − f(1) ≥ 1 + 21−α − 21+α

1− 2α
− α

1 + 2α
.

Since α
1+2α

≤ 1
6

and 1 + 21−α − 21+α ≥ 3
10

when α ∈ [0, 1
4
], it follows that

I(1) + 2g(1) ≥ 23/4

15
≥ 1

10
.

Hence it suffices to show that I(1) ≥ 1
20

, which thanks to (4.28) will follow from

f(1) ≥ 2 + 2−α − 21−2α

(1− 2α)(4− 2−α)
+

1

60
.

Since the numerator and denominator of the first fraction on the right-hand side are increasing
and decreasing in α, respectively, and f(1) is decreasing in α, it suffices to prove this for α = 1

4
,

when the inequality becomes

f(1) ≥ 4 + 23/4 − 23/2

4− 2−1/4
+

1

60
. (4.30)

The first fraction on the right is less than 0.9033 and f(1) for α = 1
4

can be numerically

bounded below by 0.9374, which yields (4.30). Alternatively, since (q2 + 1)−1/4 is concave on

[0,
√

2/3] 3 4
5
, and we have ((4

5
)2 + 1)−1/4 ≥ 22

25
and 2−1/4 ≥ 21

25
, it follows that

f(1) ≥ 2

5

(
1 +

22

25

)
+

1

5

21

25
= 0.92,

and we conclude by 0.92 ≥ 0.9033 + 1
60

. �

Proof of Lemma 4.3. If G+
0 , B

+
0 are reflections of G−0 , B

−
0 across the x2 axis, then the left-hand

side of (4.19) times 2α is

I := 2α

∫
G0∪G+

0

x1

|x|2+2α
dx− 2α

∫
B0∪B+

0

x1

|x|2+2α
dx

and all 4 sets are contained in R+ × R. When 0 ≤ a ≤ c, then direct integration gives

2α

∫ c

a

x1

|(x1, x2)|2+2α
dx1 =

1

(x2
2 + a2)α

− 1

(x2
2 + c2)α

, (4.31)

and with f from (4.22) we again have∫ s

r

dx2

(x2
2 + a2)α

=

{
a1−2α

(
f
(
s
a

)
− f

(
r
a

))
a > 0,

1
1−2α

(s1−2α − r1−2α) a = 0
(4.32)
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(we will again use these repeatedly below).
We now see that

2α

∫
B0

x1

|x|2+2α
dx =

21−2α

1− 2α
− 2−αf(1)− 2−αµα

because this is the same integral as for the region Gb in the previous proof. Next,

2α

∫
B+

0

x1

|x|2+2α
dx =

∫ 2

1

(
1

(x2
2 + 22)α

− 2−α

((x2 + 1)2 + 1)α

)
dx2 +

∫ ∞
2

(
2−α

x2α
2

− 2−α

((x2 + 1)2 + 1)α

)
dx2

= 21−2α

(
f(1)− f

(
1

2

))
+ 2−αf(2)− 21−3α

1− 2α
+ 2−αµα

and

2α

∫
G0

x1

|x|2+2α
dx = 2

∫ 1

0

dx2

(x2
2 + 1)α

= 2f(1).

Finally, from x2
2 + (x2 + 2)2 = 2((x2 + 1)2 + 1)2 we obtain

2α

∫
G+

0

x1

|x|2+2α
dx =

∫ 1

0

dx2

(x2
2 + 22)α

+

∫ 1

0

2−α

((x2 + 1)2 + 1)α
dx2 = 21−2αf

(
1

2

)
+2−α(f(2)−f(1)).

Hence

I = (2− 21−2α)f(1) + 22−2αf

(
1

2

)
− 21−2α(1− 2−α)

1− 2α
.

Since

22−2αf

(
1

2

)
> 23/2 1

2

(
4

5

)1/4

> 1 > 4(1− 2−1/4) >
21−2α(1− 2−α)

1− 2α

for α ∈ (0, 1
4
], (4.19) follows. �
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