Problem 1. Let V_1 and V_2 be subspaces of \mathbb{R}^n. Show that $V = \{v_1 + v_2 | v_1 \in V_1, v_2 \in V_2\}$ is a subspace of \mathbb{R}^n.

Problem 2. Show that $V = \{[x \ y] | x + y + axy = b\}$ is a subspace of \mathbb{R}^2 if and only if $a = b = 0$.

Problem 3. Let A and B be symmetric $n \times n$ matrices. Show that AB is symmetric if and only if $AB = BA$.

Problem 4. The matrix $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$ has an inverse of the form $A = \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}$. Find x, y, z.

Problem 5. Let A and B be $n \times n$ matrices. Show that if A and B are invertible, then AB is invertible. Show that if A^k is invertible, for some $k \geq 1$, then A is invertible.

Problem 6. Let A be an $m \times n$ matrix, $\vec{v} \in \mathbb{R}^n$ and $\vec{w} \in \mathbb{R}^m$. Prove that $A\vec{v} \cdot \vec{w} = \vec{v} \cdot A^T \vec{w}$.

Problem 7. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Show that $|\vec{x} - \vec{y}| \leq |\vec{x} - \vec{z}| + |\vec{y} - \vec{z}|$.

Problem 8. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$ such that $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{z} = \vec{z} \cdot \vec{x} = 0$. Show that at least one of the vectors $\vec{x}, \vec{y}, \vec{z}$ is equal to zero.

Problem 9. Let $\vec{x}, \vec{y} \in \mathbb{R}^3$ be two given vectors. What is the largest value that the volume of the parallelepiped spanned by $\vec{x}, \vec{y}, \vec{z}$ can take, when $\vec{z} \in \mathbb{R}^3$ is a unit vector?

Problem 10. For what values of a and b does the following system of linear equations have infinitely many solutions?

\begin{align*}
x + ay &= 0 \\
y + bz &= 1 \\
x + z &= b
\end{align*}