LECTURE 8.

ALIREZA SALEHI GOLSEFIDY

Last time we saw the definition of the ideal generated by a given subset X of R. We also saw that if R is a unital commutative ring then

$$\langle a_1, \ldots, a_n \rangle = \{ \sum_{i=1}^n r_i a_i | r_i \in R \}.$$

The following lemma shows what happens if we drop the unital and commutativity conditions:

Lemma 1. For an arbitrary ring R, the ideal generated by a is

$$\langle a \rangle = \{ \sum_{i=1}^m r_i a'_i + ra + ar' + na | n \in \mathbb{Z}, r, r', r_i, r_i' \in R \}.$$

Proof. It follows from the properties of an ideal. \square

Last time we also saw that any ideal of \mathbb{Z} is generated by one element.

Definition 2.

1. If $X = \{ a \}$, then $\langle X \rangle$ is often denoted by $\langle a \rangle$ and it is called a principal ideal.
2. A ring R is called a principal ideal ring (PIR) if R is non-zero commutative unital ring all of whose ideals are principal.
3. A PIR is called a principal integral domain (PID) if it is also an integral domain.

Example 3. \mathbb{Z} is a PID.

Lemma 4. Let $f : R \to S$ be an onto ring homomorphism. If I is an ideal of S, then

1. the preimage of I is an ideal of R.
2. $\ker(f) \subseteq f^{-1}(I)$.
3. $f(f^{-1}(I)) = I$.
4. There is a bijection between the ideals of R which contains $\ker(f)$ and the ideals of S:

$$\{ I \mid I \trianglelefteq S \} \overset{f^{-1}}{\rightarrow} \{ J \trianglelefteq R \mid \ker(f) \subseteq J \}.$$

Proof. 1. To prove that $f^{-1}(I)$ is an ideal, we have to check the following: $f^{-1}(I) - f^{-1}(I) \subseteq f^{-1}(I)$, $Rf^{-1}(I) \subseteq f^{-1}(I)$ and $f^{-1}(I)R \subseteq f^{-1}(I)$.

$$r_1, r_2 \in f^{-1}(I) \Rightarrow f(r_1), f(r_2) \in I$$
$$\Rightarrow f(r_1 + r_2) = f(r_1 - r_2) \in I$$
$$\Rightarrow r_1 - r_2 \in f^{-1}(I).$$

For any $r \in R$ and $r' \in f^{-1}(I)$, we have

$$r' \in f^{-1}(I) \Rightarrow f(r') \in I$$
$$\Rightarrow f(r)f(r') \in I$$
$$\Rightarrow f(rr') \in I$$
$$\Rightarrow rr' \in f^{-1}(I).$$
2. For any ideal I, we have that $0 \in I$. Hence $f^{-1}(0) \subseteq f^{-1}(I)$ and by the definition $\ker(f) = f^{-1}(0)$.

3. By the definition we have $f(f^{-1}(I)) = \{f(x) | x \in f^{-1}(I)\} = \{f(x) | f(x) \in I\}$, which means $f(f^{-1}(I)) = \text{Im}(f) \cap I$.

Since f is onto, we have $f(f^{-1}(I)) = I$.

4. We have already showed that f^{-1} defines a function between the mentioned sets. So it is enough to show that it is injective and surjective.

Injective: We have to show that if $f^{-1}(I_1) = f^{-1}(I_2)$, then $I_1 = I_2$.

Assume to the contrary that $I_1 \neq I_2$. So either there is $x \in I_1 \setminus I_2$ or $x \in I_2 \setminus I_1$. Without loss of generality, let us assume that the former holds. Since f is onto, there is $y \in R$ such that $f(y) = x$. But this means that $y \in f^{-1}(I_1) \setminus f^{-1}(I_2)$, which contradicts the assumption that $f^{-1}(I_1) = f^{-1}(I_2)$.

Surjective: Let J be an ideal of R which contains $\ker(f)$. Then we claim that (1) $f(J)$ is an ideal in S and (2) $J = f^{-1}(f(J))$. It is clear that (1) and (2) finish the proof of Lemma.

(1) You can prove it using the fact that f is onto.

(2) By the definition, you can check that $J \subseteq f^{-1}(f(J))$. Now we prove that $f^{-1}(f(J)) \subseteq J$.

$x \in f^{-1}(f(J))$ \implies f(x) \in f(J)$ \implies $\exists y \in J$, $f(x) = f(y)$ \implies $\exists y \in J$, $f(x - y) = 0$ \implies $\exists y \in J$, $x - y \in \ker(f) \subseteq J$ \implies $x \in J$.

\[\square\]

Corollary 5. Any homomorphic image of a PIR is a PIR.

Lemma 6. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is either 0 or prime.

Proof. If n is a composite number, then there are $1 < a, b < n$ such that $ab = n$. Hence $a + n\mathbb{Z}$ and $b + n\mathbb{Z}$ are non-zero and their product is zero. So $\mathbb{Z}/n\mathbb{Z}$ has zero-divisors.

If p is prime, then $p|ab$ if and only if either $p|a$ or $p|b$. Hence $\mathbb{Z}/p\mathbb{Z}$ is a unital (non-trivial) commutative ring without zero-divisors.

If $n = 1$, then $\mathbb{Z}/n\mathbb{Z}$ is the trivial ring which is not an integral domain (by the definition).

Corollary 7. If n is a composite integer, then $\mathbb{Z}/n\mathbb{Z}$ is PIR but not PID.

Example 8. $\mathbb{Z} \oplus \mathbb{Z}$ is a PIR which is not PID. (I leave the proof of it as an exercise.)

There are several rings which are NOT PIR.

Example 9. $\bigoplus_{i=1}^{\infty} \mathbb{Z}$ is an ideal of $\prod_{i=1}^{\infty} \mathbb{Z}$ and it is not a principal ideal. (I leave the proof of this as an exercise.)

Lemma 10. The ideal I generated by 2, x in $\mathbb{Z}[x]$ is NOT a principal ideal. In particular, $\mathbb{Z}[x]$ is an integral domain which is not a PID.

Proof. Assume to the contrary that there is $p(x) \in \mathbb{Z}[x]$ such that $(2, x) = (p(x))$.

So there is $q(x) \in \mathbb{Z}[x]$ such that $2 = p(x)q(x)$. Since $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$, we have that $p(x) = a \in \mathbb{Z}$ and moreover $a|2$. So $p(x) = \pm 1$ or $p(x) = \pm 2$. However the ideal generated by ± 1 is the whole ring $\mathbb{Z}[x]$. Thus $p(x) = \pm 2$. But this is not possible, either, as $x \not\in \langle \pm 2 \rangle$. (If $x \in \langle \pm 2 \rangle$, then there is a
polynomial \(q(x) \in \mathbb{Z}[x] \), such that \(x = 2q(x) \). But it is not possible as all the coefficients of \(2q(x) \) are even and \(x \) has an odd coefficient.

Example 11. \(\mathbb{Z}[\sqrt{6}] \) is an integral domain and not a PID. (I leave the proof of this as an exercise.) Let me just remark that later we will see that any PID has unique factorization property. But here \(6 = 2 \times 3 = \sqrt{6} \times \sqrt{6} \).