1. Find \(\lim_{x \to 0} \frac{3x^4 + 6x}{x^2 + 5x} \) (a) by factoring the numerator and denominator and (b) by using l’Hopital’s Rule.

Answer: \(\frac{6}{5} \)

2. Find \(\lim_{x \to \infty} \frac{4x^2 + 2x}{5x^2 + 3} \) (a) by dividing the numerator and denominator by \(x^2 \) and (b) by l’Hopital’s rule.

Answer: \(\frac{4}{5} \)

3. What is \(\lim_{x \to 0} \frac{1 - e^{2x}}{\sin(4x)} \)?

Answer: \(\frac{1}{2} \)

4. Find \(\lim_{x \to 0} \frac{e^{6x} - 1}{\tan(3x)} \).

Answer: 2

5. Find \(\lim_{x \to 0} \frac{x}{e^x} \).

Answer: The given formula is not indeterminate. 0

6. Find \(\lim_{x \to \infty} \frac{\ln x}{x} \).

Answer: 0

7. What is \(\lim_{x \to \infty} \frac{x}{\ln x} \)?

Answer: \(\infty \)

8. \(\lim_{x \to \infty} \frac{e^x + 5}{e^{-x} + 10} \)

Answer: \(\infty \)

9. Sketch the graph of \(y = 3 + 2x - e^x \) using the first- and second-derivative tests.

Answer: \(y \) is increasing for \(x < \ln(2) \), is decreasing for \(x > \ln(2) \), and has a global maximum at \(x = \ln(2) \approx 0.69 \). The graph is concave down for all \(x \). Plot \(y(-3) = 3 - e^{-3} \approx -3.05 \), \(y(0) = 2 \), \(y(\ln(2)) \approx 2.36 \), and \(y(2) = 7 - e^2 \approx -0.40 \). Figure A9.

Figure A9
10. Sketch the graph of \(y = 3 - e^{-x^2/2} \). Use the First- and Second-Derivative Tests.

Answer: \(y = 3 - e^{-x^2/2} \) is defined and continuous for all \(x \) and is even. • \(y \to 3 \) as \(x \to \pm \infty \) • \(y \) is decreasing for \(x < 0 \), is increasing for \(x > 0 \) and has a global minimum at \(x = 0 \). • The graph is concave down for \(x < -1 \), concave up for \(-1 < x < 1\), and concave down for \(x > 1 \). • The graph has inflection points at \(x = \pm 1 \). • Figure A10

![Graph of y = 3 - e^{-x^2/2}](image)

Figure A10

11. Find the maximum and minimum of \(y = x^5 e^{-x} \) for \(1 \leq x \leq 10 \).

Answer: [Maximum] = \(y(5) = 5^5 e^{-5} \) • [Minimum] = \(y(1) = e^{-1} \)

12. What are the maximum and minimum of \(y = (\ln x)/\sqrt{x} \) for \(1 \leq x \leq 20 \)?

Answer: [Minimum] = \(y(1) = 0 \) • [Maximum] \(y(e^2) = 2e^{-1} \)