Math 10A. Lecture Examples.

Section 1.8. Limits†

Example 1 Figure 1 shows the graph of the function,

\[\begin{align*}
F(x) &= \begin{cases}
4 - x^2 & \text{for } x < 1 \\
4 & \text{for } x = 1 \\
2x & \text{for } x > 1.
\end{cases}
\]

(a) Calculate \(F(x) \) at \(x = 0.9, 0.99, 0.999, \) and \(0.999, 1.1, 1.01, 1.001 \) and \(1.0001. \) (b) What is \(\lim_{x \to 1^-} F(x) \)? (c) What is \(\lim_{x \to 1^+} F(x) \)?

![Figure 1](image)

Answer: (a) The values are in the table below. (b) \(\lim_{x \to 1^-} F(x) = 3 \) (c) \(\lim_{x \to 1^+} F(x) = 2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(F(x) = 4 - x^2)</th>
<th>(x)</th>
<th>(F(x) = 2x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>3.19</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>0.99</td>
<td>3.0199</td>
<td>1.01</td>
<td>2.02</td>
</tr>
<tr>
<td>0.999</td>
<td>3.001999</td>
<td>1.001</td>
<td>2.002</td>
</tr>
<tr>
<td>0.9999</td>
<td>3.00019999</td>
<td>1.0001</td>
<td>2.0002</td>
</tr>
</tbody>
</table>

†Lecture notes to accompany Section 1.8 of Calculus by Hughes-Hallett et al.
Example 2 Figure 2 shows the graph of \(y = \sin(1/x) \) for \(x > 0 \). Explain why \(\lim_{x \to 0^+} \sin(1/x) \) does not exist.

Answer: Since \(\sin x \) oscillates infinitely often between 1 and \(-1\) as \(x \) increases through all positive values, \(\sin(1/x) \) oscillates infinitely often between 1 and \(-1\) and does not approach any one number as \(x \) approaches 0 from the right.

Example 3 What is \(\lim_{x \to 5^+} \left[A(x)B(x) + \frac{C(x)}{D(x)} \right] \) if \(\lim_{x \to 5^+} A(x) = 2, \lim_{x \to 5^+} B(x) = 5, \lim_{x \to 5^+} C(x) = 6, \) and \(\lim_{x \to 5^+} D(x) = 3? \)

Answer: \(\lim_{x \to 5^+} \left[A(x)B(x) + \frac{C(x)}{D(x)} \right] = 12 \)
Example 4
Draw the graph of $J(x) = \begin{cases} x^2 & \text{for } x < 2 \\ 8 - 2x & \text{for } x > 2 \end{cases}$ and find the limit of $J(x)$ as $x \to 2$.

Answer: Figure A4. $\lim_{x \to 2} J(x) = 4$

Example 5
What is $\lim_{x \to 1} \frac{x+5}{x+2}$?

Answer: $\lim_{x \to 1} \frac{x+5}{x+2} = 2$

Example 6
Find $\lim_{x \to 1} T(x)$ where

$$T(x) = \begin{cases} x + 1 & \text{for } x \leq 1 \\ 1/x & \text{for } x > 1 \end{cases}$$

Answer: $\lim_{x \to 1} T(x)$ is not defined (does not exist).
Example 7 Figure 3 shows the graph of a function K, defined by

$$K(x) = \begin{cases} x + 4 & \text{for } -2 \leq x < 1 \\ x + 1 & \text{for } 1 \leq x \leq 4. \end{cases}$$

(a) At what values of x for $-2 \leq x \leq 4$ is K continuous?
(b) Is K continuous from the left or from the right at the values of x for $-2 \leq x \leq 4$ where it is not continuous?
(c) What are the largest intervals on which K is continuous?

Answer: (a) K is continuous at all x with $-2 < x < 1$ and $1 < x < 4$. (b) K is not continuous at -2 (because it is not defined for $x < -2$) but is continuous from the right at -2. K is not continuous at 1 (because the one-sided limits are different) but is continuous from the right at 1. K is not continuous at 4 (because it is not defined for $x > 4$) but is continuous from the left at 4. (c) K is continuous on the intervals $[-2, 1)$ and $[1, 4]$.

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http://www.math.ucsd.edu/~ashenk/:

Section 1.1: Examples 1 through 4

1When we say that one (possibly infinite) interval I_1 is “larger” than another interval I_2, we mean that I_1 contains I_2 and is not equal to I_2.

2The chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.