Math 10B. Lecture Examples.

Section 8.1. Areas and volumes†

Example 1 The base of a solid is the region between the curves \(y = \frac{1}{2}x^2 \) and \(y = 1 - \frac{1}{2}x^2 \) for \(0 \leq x \leq 1 \) in an \(xy \)-plane and its cross sections perpendicular to the \(x \)-axis are squares. Find its volume.

Answer: Figures A1a and A1b. \(\text{Volume} = \frac{8}{15} \)

Example 2 The intersection of a solid with an \(xy \)-plane with distances measured in meters is the region \(R \) between the curves \(y = x^{1/3} \) and \(y = \frac{4}{3}x^{1/3} \) for \(0 \leq x \leq 1 \). The cross sections of the solid perpendicular to the \(x \)-axis are circles with diameters in the \(xy \)-plane. Find its volume.

Answer: Figures A2a and A2b. \(\text{Volume} = \frac{1}{60}\pi \) cubic meters

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http://www.math.ucsd.edu/~ashenk/‡:

Section 7.3: Examples 1 and 2

‡Lecture notes to accompany Section 8.1 of Calculus by Hughes-Hallett et al

‡The chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.