Set Operations, Functions, and Counting

Let \(\mathbb{N} \) denote the positive integers, \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \) be the non-negative integers and \(\mathbb{Z} = \mathbb{N}_0 \cup \{-\mathbb{N}_0\} \) – the positive and negative integers including 0, \(\mathbb{Q} \) the rational numbers, \(\mathbb{R} \) the real numbers, and \(\mathbb{C} \) the complex numbers. We will also use \(\mathbb{F} \) to stand for either of the fields \(\mathbb{R} \) or \(\mathbb{C} \).

5.1 Set Operations and Functions

Notation 5.1 Given two sets \(X \) and \(Y \), let \(Y^X \) denote the collection of all functions \(f : X \to Y \). If \(X = \mathbb{N} \), we will say that \(f \in Y^\mathbb{N} \) is a sequence with values in \(Y \) and often write \(f_n \) for \(f(n) \) and express \(f \) as \(\{f_n\}_{n=1}^\infty \). If \(X = \{1, 2, \ldots, N\} \), we will write \(Y^N \) in place of \(Y^{\{1, 2, \ldots, N\}} \) and denote \(f \in Y^N \) by \(f = (f_1, f_2, \ldots, f_N) \) where \(f_n = f(n) \).

Notation 5.2 More generally if \(\{X_\alpha : \alpha \in A\} \) is a collection of non-empty sets, let \(X_A = \prod_{\alpha \in A} X_\alpha \) and \(\pi_\alpha : X_A \to X_\alpha \) be the canonical projection map defined by \(\pi_\alpha(x) = x_\alpha \). If \(X_\alpha = X \) for some fixed space \(X \), then we will write \(\prod_{\alpha \in A} X_\alpha \) as \(X^A \) rather than \(X_A \).

Recall that an element \(x \in X_A \) is a “choice function,” i.e. an assignment \(x_\alpha := x(\alpha) \in X_\alpha \) for each \(\alpha \in A \). The axiom of choice states that \(X_A \neq \emptyset \) provided that \(X_\alpha \neq \emptyset \) for each \(\alpha \in A \).

Notation 5.3 Given a set \(X \), let \(2^X \) denote the power set of \(X \) – the collection of all subsets of \(X \) including the empty set.

The reason for writing the power set of \(X \) as \(2^X \) is that if we think of 2 meaning \(\{0, 1\} \), then an element of \(a \in 2^X = \{0, 1\}^X \) is completely determined by the set

\[A := \{x \in X : a(x) = 1\} \subset X. \]

In this way elements in \(\{0, 1\}^X \) are in one to one correspondence with subsets of \(X \).

For \(A \in 2^X \) let

\[A^c := X \setminus A = \{x \in X : x \notin A\} \]

and more generally if \(A, B \subset X \) let

\[B \setminus A := \{x \in B : x \notin A\} = A \cap B^c. \]

We also define the symmetric difference of \(A \) and \(B \) by

\[A \Delta B := (B \setminus A) \cup (A \setminus B). \]

As usual if \(\{A_\alpha\}_{\alpha \in I} \) is an indexed collection of subsets of \(X \) we define the union and the intersection of this collection by

\[\bigcup_{\alpha \in I} A_\alpha := \{x \in X : \exists \alpha \in I \; x \in A_\alpha\} \quad \text{and} \quad \bigcap_{\alpha \in I} A_\alpha := \{x \in X : x \in A_\alpha \forall \alpha \in I\}. \]

Example 5.4. Let \(A, B \), and \(C \) be subsets of \(X \). Then

\[A \cap (B \cup C) = [A \cap B] \cup [A \cap C]. \]

Indeed, \(x \in A \cap (B \cup C) \iff x \in A \) and \(x \in B \cup C \iff x \in A \) and \(x \in B \) or \(x \in A \) and \(x \in C \iff x \in A \cap B \) or \(x \in A \cap C \iff x \in [A \cap B] \cup [A \cap C] \).

Notation 5.5 We will also write \(\bigsqcup_{\alpha \in I} A_\alpha \) for \(\bigcup_{\alpha \in I} A_\alpha \) in the case that \(\{A_\alpha\}_{\alpha \in I} \) are pairwise disjoint, i.e. \(A_\alpha \cap A_\beta = \emptyset \) if \(\alpha \neq \beta \).

Notice that \(\cup \) is closely related to \(\exists \) and \(\cap \) is closely related to \(\forall \). For example let \(\{A_n\}_{n=1}^\infty \) be a sequence of subsets from \(X \) and define

\[\{A_n \text{ i.o.}\} := \{x \in X : \# \{n : x \in A_n\} = \infty\} \quad \text{and} \quad \{A_n \text{ a.a.}\} := \{x \in X : x \in A_n \text{ for all } n \text{ sufficiently large}\}. \]

(One should read \(\{A_n \text{ i.o.}\} \) as \(A_n \) infinitely often and \(\{A_n \text{ a.a.}\} \) as \(A_n \) almost always.) Then \(x \in \{A_n \text{ i.o.}\} \) iff

\[\forall N \in \mathbb{N} \exists n \geq N \exists x \in A_n \]

and this may be expressed as

\[\{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{n \geq N} A_n. \]

Similarly, \(x \in \{A_n \text{ a.a.}\} \) iff

\[\forall N \in \mathbb{N} \exists n \geq N \exists x \in A_n \]
Definition 5.6. If $f : X \to Y$ is a function and $B \subset Y$, then
$$f^{-1}(B) := \{ x \in X : f(x) \in B \}.$$
If $A \subset X$ we also write,
$$f(A) := \{ f(x) : x \in A \} \subset Y.$$

Example 5.7. If $f : X \to Y$ is a function and $B \subset Y$, then $f^{-1}(B^c) = [f^{-1}(B)]^c$ or to be more precise,
$$f^{-1}(Y \setminus B) = X \setminus f^{-1}(B).$$
To prove this notice that
$$x \in f^{-1}(B^c) \iff f(x) \in B^c \iff f(x) \notin B \iff f^{-1}(B) \iff x \notin [f^{-1}(B)]^c.$$
On the other hand, if $A \subset X$ it is not necessarily true that $f(A^c) = [f(A)]^c$. For example, suppose that $f : \{1, 2\} \to \{1, 2\}$ is defined by $f(1) = f(2) = 1$ and $A = \{1\}$. Then $f(A) = f(A^c) = \{1\}$ where $[f(A)]^c = \{1\}^c = \{2\}$.

Notation 5.8 If $f : X \to Y$ is a function and $\mathcal{E} \subset 2^Y$ let
$$f^{-1}\mathcal{E} := f^{-1}(\mathcal{E}) := \{ f^{-1}(E) \mid E \in \mathcal{E} \}.$$
If $\mathcal{G} \subset 2^X$, let
$$f_\mathcal{G} := \{ A \in 2^X \mid f^{-1}(A) \in \mathcal{G} \}.$$

Definition 5.9. Let $\mathcal{E} \subset 2^X$ be a collection of sets, $A \subset X$, $i_A : A \to X$ be the inclusion map ($i_A(x) = x$ for all $x \in A$) and
$$\mathcal{E}_A = i_A^{-1}(\mathcal{E}) = \{ A \cap E : E \in \mathcal{E} \}.$$

5.1.1 Exercises

Let $f : X \to Y$ be a function and $\{A_i\}_{i \in I}$ be an indexed family of subsets of Y, verify the following assertions.

Exercise 5.1. $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$.

Exercise 5.2. Suppose that $B \subset Y$, show that $B \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (B \setminus A_i)$.

Exercise 5.3. $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$.

Exercise 5.4. $f^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} f^{-1}(A_i)$.

Exercise 5.5. Find a counterexample which shows that $f(C \cap D) = f(C) \cap f(D)$ need not hold.

5.2 Cardinality

In this section, X and Y be sets.

Definition 5.10 (Cardinality). We say $\text{card}(X) \leq \text{card}(Y)$ if there exists an injective map, $f : X \to Y$ and $\text{card}(Y) \geq \text{card}(X)$ if there exists a surjective map $g : Y \to X$. We say $\text{card}(X) = \text{card}(Y)$ (also denoted as $X \sim Y$) if there exists bijections, $f : X \to Y$.

Proposition 5.11. If X and Y are sets, then $\text{card}(X) \leq \text{card}(Y)$ iff $\text{card}(Y) \geq \text{card}(X)$.

Proof. If $f : X \to Y$ is an injective map, define $g : Y \to X$ by $g|_{f(X)} = f^{-1}$ and $g|_{Y \setminus f(X)} = x_0 \in X$ chosen arbitrarily. Then $g : Y \to X$ is surjective.

If $g : Y \to X$ is a surjective map, then $Y_x := g^{-1}\{x\} \neq \emptyset$ for all $x \in X$ and so by the axiom of choice there exists $f \in \prod_{x \in X} Y_x$. Thus $f : X \to Y$ such that $f(x) \in Y_x$ for all x. As the $\{Y_x\}_{x \in X}$ are pairwise disjoint, it follows that f is injective.

Theorem 5.12 (Schröder–Bernstein Theorem). If $\text{card}(X) \leq \text{card}(Y)$ and $\text{card}(Y) \leq \text{card}(X)$, then $\text{card}(X) = \text{card}(Y)$. Stated more explicitly; if there exists injective maps $f : X \to Y$ and $g : Y \to X$, then there exists a bijection map, $h : X \to Y$.

Proof. See the Appendix, Theorem B.10.

Exercise 5.6. If $X = X_1 \cup X_2$ with $X_1 \cap X_2 = \emptyset$, $Y = Y_1 \cup Y_2$ with $Y_1 \cap Y_2 = \emptyset$, and $X_i \sim Y_i$ for $i = 1, 2$, then $X \sim Y$. This exercise generalizes to an arbitrary number of factors.
5.3 Finite Sets

Notation 5.13 (Integer Intervals) For $n \in \mathbb{N}$ we let

$$J_n := \{1, 2, \ldots, n\} := \{k \in \mathbb{N} : k \leq n\}.$$

Definition 5.14. We say a non-empty set, X, is **finite** if $\text{card}(X) = \text{card}(J_n)$ for some $n \in \mathbb{N}$. We will also write $\#(X) = n$\footnote{You should read $\#(X) = n$, as X is a set with n elements.} to indicate that $\text{card}(X) = \text{card}(J_n)$. It is shown in Theorem 5.17 below that $\#(X)$ is well defined, i.e. it is not possible for $\text{card}(X) = \text{card}(J_n)$ and $\text{card}(X) = \text{card}(J_m)$ unless $m = n$.

Lemma 5.15. Suppose $n \in \mathbb{N}$ and $k \in J_{n+1}$, then $\text{card}(J_{n+1} \setminus \{k\}) = \text{card}(J_n)$.

Proof. Let $f : J_n \rightarrow J_{n+1} \setminus \{k\}$ be defined by

$$f(x) = \begin{cases} x & \text{if } x < k \\ x+1 & \text{if } x \geq k \end{cases}$$

Then f is the desired bijection.

Alternatively. If $n = 1$, then $J_2 = \{1, 2\}$ and either $J_2 \setminus \{k\} = J_1$ or $J_2 \setminus \{k\} = \{2\}$, either way $\text{card}(J_2 \setminus \{k\}) = \text{card}(J_1)$. Now suppose that result holds for a given $n \in \mathbb{N}$ and $k \in J_{n+2}$. If $k = \{n+2\}$ we have $J_{n+2} \setminus \{k\} = J_{n+1}$ so card $(J_{n+2} \setminus \{k\}) = \text{card}(J_{n+1})$, while if $k \in J_{n+1} \subset J_{n+2}$, then $J_{n+2} \setminus \{k\} = (J_{n+1} \setminus \{k\}) \cup \{n+2\} \sim J_n \cup \{n+2\} \sim J_n \cup \{n+1\} = J_{n+1}$. \blacksquare

Lemma 5.16. If $m, n \in \mathbb{N}$ with $n > m$, then every map, $f : J_n \rightarrow J_m$, is not injective.

Proof. If $f : J_n \rightarrow J_m$ were injective, then $f|_{J_{m+1}} : J_{m+1} \rightarrow J_m$ would be injective as well. Therefore it suffices to show there is no injective map, $f : J_{m+1} \rightarrow J_m$ for all $m \in \mathbb{N}$. We prove this last assertion by induction on m. The case $m = 1$ is trivial as $J_1 = \{1\}$ so the only function, $f : J_2 \rightarrow J_1$ is the function, $f(1) = 1 = f(2)$ which is not injective.

Now suppose $m \geq 1$ and there were an injective map, $f : J_{m+2} \rightarrow J_{m+1}$. Letting $k := f(m+2)$ we would have, $f|_{J_{m+1}} : J_{m+1} \rightarrow J_{m+1} \setminus \{k\} \sim J_m$, which would produce and injective map from J_{m+1} to J_m. However this contradicts the induction hypothesis and thus completes the proof. \blacksquare

Theorem 5.17. If $m, n \in \mathbb{N}$, then $\text{card}(J_m) \leq \text{card}(J_n)$ iff $m \leq n$. Moreover, $\text{card}(J_n) = \text{card}(J_m)$ iff $m = n$ and hence $\text{card}(J_m) < \text{card}(J_n)$ iff $m < n$.

Proof. As $J_m \subset J_n$ if $m \leq n$ and $J_m = J_n$ if $m = n$, it is only the forward implications that have any real content. If $\text{card}(J_m) \leq \text{card}(J_n)$, there exists an injective map, $g : J_m \rightarrow J_n$. According to Lemma 5.16 this can only happen if $m \leq n$. If $\text{card}(J_n) = \text{card}(J_m)$, then $\text{card}(J_n) \leq \text{card}(J_m)$ and $\text{card}(J_m) \leq \text{card}(J_n)$ and hence $m \leq n$ and $n \leq m$, i.e. $m = n$. \blacksquare

Proposition 5.18. If X is a finite set with $\#(X) = n$ and S is a non-empty subset of X, then S is a finite set and $\#(S) \leq n$. Moreover if $\#(S) = n$, then $S = X$.

Proof. It suffices to assume that $X = J_n$ and $S \subset J_n$. We now give two proofs of the result.

Proof 1. Let $S_1 = S$ and $f(1) := \min S \geq 1$. If $S_2 := S_1 \setminus \{f(1)\}$ is not empty, let $f(2) := \min S_2 \geq 2$. We then continue this construction inductively. So if $f(k) = \min S_k \geq k$ has been constructed, then we define $S_{k+1} := S_k \setminus \{f(k)\}$. If $S_{k+1} \neq \emptyset$ we define $f(k+1) := \min S_{k+1} \geq k + 1$. As $f(k) \geq k$ for all k that f is defined, this process has to stop after at most n steps. Say it stops at k so that $S_k+1 = \emptyset$. Then $f : J_k \rightarrow S$ is a bijection and therefore S is finite and $\#(S) = k \leq n$. Moreover, the only way that $k = n$ is if $f(k) = k$ at each step of the construction so that $f : J_n \rightarrow S$ is the identity map in this case, i.e. $S = J_n$.

Proof 2. We prove this by induction on n. When $n = 1$ the only non-empty subset of S of J_1 is J_1 itself. Thus $\#(S) = 1$ and $S = J_1$. Now suppose that the result hold for some $n \in \mathbb{N}$ and let $S \subset J_{n+1}$. If $n+1 \notin S$, then $S \subset J_n$ and by the induction hypothesis we know $\#(S) = k \leq n < n + 1$. So now suppose that $n+1 \in S$ and let $S' := S \setminus \{n+1\} \subset J_n$. Then by the induction hypothesis, S' is a finite set and $\#(S') = k \leq n$, i.e. there exists a bijection, $f' : J_k \rightarrow S'$ and $S' = J_n$ is $k = n$. Therefore $f : J_{n+1} \rightarrow S$ given by $f = f'$ on J_k and $f(k+1) = n+1$ is a bijections from J_{n+1} to S. Therefore $\#(S) = k+1 \leq n+1$ with equality iff $S' = J_n$ which happens iff $S = J_{n+1}$. \blacksquare

Proposition 5.19. If $f : J_n \rightarrow J_n$ is a map, then the following are equivalent,

1. f is injective,
2. f is surjective,
3. f is bijective.

Proof. If $n = 1$, the only map $f : J_1 \rightarrow J_1$ is $f(1) = 1$. So in this case there is nothing to prove. So now suppose the proposition holds for level n and $f : J_{n+1} \rightarrow J_{n+1}$ is a given map.
If \(J_{n+1} \rightarrow J_{n+1} \) is an injective map and \(f(J_{n+1}) \) is a proper subset of \(J_{n+1} \), then \(\text{card}(J_{n+1}) < \text{card}(f(J_{n+1})) = \text{card}(J_{n+1}) \) which is absurd. Thus \(f \) is injective implies \(f \) is surjective.

Conversely suppose that \(J_{n+1} \rightarrow J_{n+1} \) is surjective. Let \(g : J_{n+1} \rightarrow J_{n+1} \) be a right inverse, i.e. \(f \circ g = \text{id} \), which is necessarily injective, see the proof of Proposition [5.18]. By the previous paragraph we know that \(g \) is necessarily surjective and therefore \(f = g^{-1} \) is a bijection.

Theorem 5.20. A subset \(S \subseteq \mathbb{N} \) is finite iff \(S \) is bounded. Moreover if \(\#(S) = n \in \mathbb{N} \) then the sup \(\{S \geq n \} \) with equality iff \(S = J_n \).

Proof. If \(S \) is bounded then \(S \subseteq J_n \) for some \(n \in \mathbb{N} \) and hence \(S \) is a finite set by Proposition [5.18]. Also observe that if \(\#(S) = n = \sup(S) \), then \(S \subseteq J_n \) and \(\#(S) = n = \#(J_n) \). Thus it follows from Proposition [5.18] that \(S = J_n \).

Conversely suppose that \(S \subseteq \mathbb{N} \) is a finite set and let \(n = \#(S) \). We will now complete the proof by induction. If \(n = 1 \) we have \(S \sim J_1 \) and therefore \(S = \{k\} \) for some \(k \in \mathbb{N} \). In particular sup \(S = k \geq 1 \) with equality iff \(S = J_1 \).

Suppose the truth of the statement for some \(n \in \mathbb{N} \) and let \(S \subseteq \mathbb{N} \) be a set with \(\#(S) = n + 1 \). If we choose a point, \(k \in S \), we have by Lemma [5.15] that \(\#(S \setminus \{k\}) = n \). Hence by the induction hypothesis, \(\sup(S \setminus \{k\}) \geq n \) with equality iff \(S \setminus \{k\} = J_n \). If \(\sup(S \setminus \{k\}) > n \) then \(\sup(S) \geq \sup(S \setminus \{k\}) \geq n + 1 \) as desired. If \(\sup(S \setminus \{k\}) = n \) then \(S \setminus \{k\} = J_n \) therefore \(S \ni k > n \). Hence it follows that \(\sup(S) = k \geq n + 1 \).

Corollary 5.21. Suppose \(S \) is a non-empty subset of \(\mathbb{N} \). Then \(S \) is an unbounded subset of \(\mathbb{N} \) iff \(\text{card}(J_n) \leq \text{card}(S) \) for all \(n \in \mathbb{N} \).

Proof. If \(S \) is bounded we know \(\text{card}(S) = \text{card}(J_k) \) for some \(k \in \mathbb{N} \) which would violate the hypothesis that \(\text{card}(J_n) \leq \text{card}(S) \) for all \(n \in \mathbb{N} \). Conversely if \(\text{card}(S) \leq \text{card}(J_n) \) for some \(n \in \mathbb{N} \), then there exists and injective map, \(f : S \rightarrow J_n \). Therefore \(\text{card}(S) = \text{card}(f(S)) = \text{card}(J_k) \) for some \(k \leq n \). So \(S \) is finite and hence bounded in \(\mathbb{N} \) by Theorem [5.20].

Exercise 5.7. Suppose that \(m, n \in \mathbb{N} \), show \(J_{m+n} = J_m \cup (m+J_n) \) and \((m+J_n) \cap J_m = \emptyset \). Use this to conclude if \(X \) is a disjoint union of two non-empty finite sets, \(X_1 \) and \(X_2 \), then \(\#(X) = \#(X_1) + \#(X_2) \).

Exercise 5.8. Suppose that \(m, n \in \mathbb{N} \), show \(J_m \times J_n \approx J_{mn} \). Use this to conclude if \(X \) and \(Y \) are two non-empty sets, then \(\#(X \times Y) = \#(X) \cdot \#(Y) \).

5.4 Countable and Uncountable Sets

Definition 5.22 (Countability). A set \(X \) is said to be **countable** if \(X = \emptyset \) or if there exists a surjective map, \(f : \mathbb{N} \rightarrow X \). Otherwise \(X \) is said to be **uncountable**.

Remark 5.23. From Proposition [5.11] it follows that \(X \) is **countable** iff there exists an injective map, \(g : X \rightarrow \mathbb{N} \). This may be succinctly stated as; \(X \) is **countable** iff \(\text{card}(X) \leq \text{card}(\mathbb{N}) \). From a practical point of view as set \(X \) is countable iff the elements of \(X \) may be arranged into a linear list,

\[
X = \{x_1, x_2, x_3, \ldots \}.
\]

Example 5.24. The integers, \(\mathbb{Z} \), are countable. In fact \(\mathbb{N} \sim \mathbb{Z} \), for example define \(f : \mathbb{N} \rightarrow \mathbb{Z} \) by

\[
(f(1), f(2), f(3), f(4), f(5), f(6), f(7), \ldots) = (0, 1, -1, 2, -2, 3, -3, \ldots).
\]

Lemma 5.25. If \(S \subseteq \mathbb{N} \) is an unbounded set, then \(\text{card}(S) = \text{card}(\mathbb{N}) \).

Proof. The main idea is that any subset, \(S \subseteq \mathbb{N} \), may be given as an finite or infinite list written in increasing order, i.e.

\[
S = \{n_1, n_2, n_3, \ldots \} \quad \text{with} \quad n_1 < n_2 < n_3 < \ldots.
\]

If the list is finite, say \(S = \{n_1, \ldots, n_k\} \), then \(n_k \) is an upper bound for \(S \). So \(S \) will be unbounded iff only if the list is infinite in which case \(f : \mathbb{N} \rightarrow S \) defined by \(f(k) = n_k \) defines a bijection.

Formal proof. Define \(f : \mathbb{N} \rightarrow S \) via, let

\[
S_1 := S \quad \text{and} \quad f(1) := \min S_1, \\
S_2 := S_1 \setminus \{f(1)\} \quad \text{and} \quad f(2) := \min S_2, \\
S_3 := S_2 \setminus \{f(2)\} \quad \text{and} \quad f(3) := \min S_3 \\
\vdots
\]

In more detail, let \(T \) denote those \(n \in \mathbb{N} \) such that there exists \(f : J_n \rightarrow S \) and \(\{S_k \subset S\} \}_{k=1}^n \) satisfying, \(S_1 = f, \) \(f(k) = \min S_k \) and \(S_{k+1} = S_k \setminus \{f(k)\} \) for \(1 \leq k < n \). If \(n \in T \), we may define \(S_n+1 := S_n \setminus \{f(n)\} \) and \(f(n+1) := \min S_{n+1} \) in order to show \(n+1 \in T \). Thus \(T = \mathbb{N} \) and we have constructed an injective map, \(f : \mathbb{N} \rightarrow S \). Moreover \(\cap_{k \in \mathbb{N}} S_k \subseteq \mathbb{N} \setminus J_n \) for all \(n \) and therefore \(\cap_{k \in \mathbb{N}} S_k = \emptyset \). Thus it follows that \(f \) is a bijection.

- End of Lecture 14, 10/31/2012.

The following theorem summarizes most of what we need to know about counting and countability.

Theorem 5.26. The following properties hold:

1. \(\mathbb{N} \times \mathbb{N} \) is countable and in fact \(\mathbb{N} \times \mathbb{N} \sim \mathbb{N} \), i.e. there exists a bijective map, \(h \), from \(\mathbb{N} \) to \(\mathbb{N} \times \mathbb{N} \).
2. If X and Y are countable, then $X \times Y$ is countable.

3. If $\{X_n\}_{n \in \mathbb{N}}$ are countable sets then $X := \bigcup_{n=1}^{\infty} X_n$ is a countable set.

4. If X is countable, then either there exists $n \in \mathbb{N}$ such that $X \sim J_n$ or $X \sim \mathbb{N}$.

5. If $S \subset \mathbb{N}$ and $S \sim J_n$ for some $n \in \mathbb{N}$ then S is bounded.

6. If X is a set and $\text{card} \, J_n \leq \text{card} \, X$ for all $n \in \mathbb{N}$ then $\text{card} \, \mathbb{N} \leq \text{card} \, X$.

7. If $A \subset X$ is a subset of a countable set X then A is countable.

Proof. We take each item in turn.

1. Put the elements of $\mathbb{N} \times \mathbb{N}$ into an array of the form

 $$(1,1) \ (1,2) \ (1,3) \ldots$$

 $$(2,1) \ (2,2) \ (2,3) \ldots$$

 $$(3,1) \ (3,2) \ (3,3) \ldots$$

 and then “count” these elements by counting the sets $\{(i,j) : i+j = k\}$ one at a time. For example let $h(1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) = (3,1), h(5) = (2,2), h(6) = (1,3)$ and so on. In other words we put $\mathbb{N} \times \mathbb{N}$ into the following list form,

 $$\mathbb{N} \times \mathbb{N} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,1), \ldots, (1,4), \ldots \}.$$

2. If $f : \mathbb{N} \to X$ and $g : \mathbb{N} \to Y$ are surjective functions, then the function $(f \times g) : \mathbb{N} \to X \times Y$ is surjective where $(f \times g)(m,n) := (f(m),g(n))$ for all $(m,n) \in \mathbb{N} \times \mathbb{N}$.

3. By assumption there exists surjective maps, $f_n : \mathbb{N} \to J_n$ for each $n \in \mathbb{N}$.

4. Let $h(n) := (a(n), b(n))$ be the bijection constructed for item 1. Then $f : \mathbb{N} \to X$ defined by $f(n) := f_{a(n)}(b(n))$ is a surjective map.

5. To see this let $f : \mathbb{N} \to X$ be a surjective map and let $g(x) := \min f^{-1}\{\{x\}\}$ for all $x \in X$. Then $g : X \to \mathbb{N}$ is an injective map. Let $S := g(X)$, then $g : X \to S \subset \mathbb{N}$ is a bijection. So it remains to show $S \sim \mathbb{N}$ or $S \sim J_n$ for some $n \in \mathbb{N}$. If S is unbounded, then $S \sim \mathbb{N}$ as we have already seen. So it suffices to consider the case where S is bounded. If S is bounded by 1 then $S = \{1\} = J_1$ and we are done. Now assume the result is true if S is bounded by $n \in \mathbb{N}$ and now suppose that S is bounded by $n+1$. If $n+1 \notin S$, then S is bounded by n and so by induction, $S \sim J_k$ for some $k \leq n < n+1$. If $n+1 \in S$, then from above, $S \setminus \{n+1\} \sim J_n$ for some $k \leq n$, i.e. there exists a bijection, $f : J_k \to S \setminus \{n+1\}$. We then extend f to f_{k+1} by setting $f(k+1) := n+1$ which shows $J_{k+1} \sim S$.

6. We again prove this by induction on n. If $n = 1$, then $S = \{m\}$ for some $m \in \mathbb{N}$ which is bounded. So suppose for some $n \in \mathbb{N}$, every subset $S \subset \mathbb{N}$ with $S \sim J_n$ is bounded. Now suppose that $S \subset \mathbb{N}$ with $S \sim J_{n+1}$. Then

 $f(J_n) \sim J_n$ and hence $f(J_n)$ is bounded in \mathbb{N}. Then $\max f(J_n) \vee \{f(n)+1\}$ is an upper bound for S. This completes the inductive argument.

6. For each $n \in \mathbb{N}$ there exists and injection, $f_n : J_n \to X$. By replacing X by $X_0 := \bigcup_{n \in \mathbb{N}} f_n(J_n)$ we may assume that $X = \bigcup_{n \in \mathbb{N}} f_n(J_n)$. Thus there exists a surjective map, $f : \mathbb{N} \to X$ by item 3. Let $g : X \to \mathbb{N}$ be defined by $g(x) := \min f^{-1}\{\{x\}\}$ for all $x \in X$ and let $S := g(X)$. To finish the proof we need only show that S is unbounded. If S were bounded, then we would find $k \in \mathbb{N}$ such that $J_k \sim S \sim X$. However this is impossible since $\text{card} \, J_n \leq \text{card} \, X = \text{card} \, J_k$ would imply $n \leq k$ even though n can be chosen arbitrarily in \mathbb{N}.

7. If $g : X \to \mathbb{N}$ is an injective map then $g|_A : A \to \mathbb{N}$ is an injective map and therefore A is countable.

Lemma 5.27. If X is a countable set which contains $Y \subset X$ with $Y \sim \mathbb{N}$, then $X \sim \mathbb{N}$.

Proof. By assumption there is an injective map, $g : X \to \mathbb{N}$ and a bijective map, $f : \mathbb{N} \to Y$. It then follows that $g \circ f : \mathbb{N} \to \mathbb{N}$ is injective from which it follows that $g(X)$ is unbounded. Indeed, $(g \circ f)(J_n) \subset g(X)$ for all n implies $\text{card} \, (J_n) \leq \text{card} \, (g(X))$ for all n which implies $g(X)$ is unbounded by Corollary 5.21. Therefore $X \sim g(X) \sim \mathbb{N}$ by Lemma 5.25.

Corollary 5.28. We have $\text{card} \, (\mathbb{Q}) = \text{card} \, (\mathbb{N})$ and in fact, for any $a < b$ in \mathbb{R}, $\text{card} \, (\mathbb{Q} \cap (a,b)) = \text{card} \, (\mathbb{N})$.

Proof. First off \mathbb{Q} is a countable since \mathbb{Q} may be expressed as a countable union of countable sets;

$$\mathbb{Q} = \bigcup_{m \in \mathbb{N}} \left\{ \frac{n}{m} : n \in \mathbb{Z} \right\}.$$

From this it follows that $\mathbb{Q} \cap (a,b)$ is countable for all $a < b$ in \mathbb{R}. As these sets are not finite, they must have the cardinality of \mathbb{N}.

Theorem 5.29 (Uncountability results). If X is an infinite set and Y is a set with at least two elements, then Y^X is uncountable. In particular 2^X is uncountable for any infinite set X.

Proof. Let us begin by showing $\mathbb{N}^N = \{0,1\}^N$ is uncountable. For sake of contradiction suppose $f : \mathbb{N} \to \{0,1\}^N$ is a surjection and write $f(n)$ as $(f_1(n), f_2(n), f_3(n), \ldots)$. Now define $a \in \{0,1\}^N$ by $a_n := 1 - f_n(n)$. By construction $f_n(n) \neq a_n$ for all n and so $a \notin f(N)$. This contradicts the assumption that f is surjective and shows \mathbb{N}^N is uncountable. For the general
case, since $Y_0^X \subset Y^X$ for any subset $Y_0 \subset Y$, if Y_0^X is uncountable then so is Y^X. In this way we may assume Y_0 to be a two point set which may as well be $Y_0 = \{0,1\}$. Moreover, since X is an infinite set, we may find an injective map $x: \mathbb{N} \to X$ and use this to set up an injection, $i: 2^\mathbb{N} \to 2^X$ by setting $i((A)) = \{x_n: n \in \mathbb{N}\} \subset X$ for all $A \subset \mathbb{N}$. If $2^\mathbb{N}$ were countable we could find a surjective map $f: 2^X \to \mathbb{N}$ in which case $f \circ i: 2^\mathbb{N} \to \mathbb{N}$ would be surjective as well. However this is impossible since we have already seen that $2^\mathbb{N}$ is uncountable.

Corollary 5.30. The set $(0,1) := \{a \in \mathbb{R} : 0 < a < 1\}$ is uncountable while $\mathbb{Q} \cap (0,1)$ is countable. More generally, for any $a < b$ in \mathbb{R}, $\text{card}(\mathbb{Q} \cap (a,b)) = \text{card}(\mathbb{N})$ while $\text{card}(\mathbb{Q}^c \cap (a,b)) > \text{card}(\mathbb{N})$.

Proof. From Section 3.4 the set $\{0,1,2\ldots,8\}^\mathbb{N}$ can be mapped injectively into $(0,1)$ and therefore it follows from Theorem 5.29 that $(0,1)$ is uncountable. For each $m \in \mathbb{N}$, let $A_m := \{\frac{m}{n} : n \in \mathbb{N}$ with $n < m\}$. Since $\mathbb{Q} \cap (0,1) = \cup_{m=1}^\infty X_m$ and $\#(X_m) < \infty$ for all m, another application of Theorem 5.26 shows $\mathbb{Q} \cap (0,1)$ is countable.

The fact that these results hold for any other finite interval follows from the fact that $f : (0,1) \to (a,b)$ defined by $f(t) := a + t(b-a)$ is a bijection.

Definition 5.31. We say a non-empty set X is **infinite** if X is not a finite set.

Example 5.32. Any unbounded subset, $S \subset \mathbb{N}$, is an infinite set according to Theorem 5.20.

Theorem 5.33. Let X be a non-empty set. The following are equivalent:

1. X is an infinite set,
2. $\text{card}(J_n) \leq \text{card}(X)$ for all $n \in \mathbb{N}$,
3. $\text{card}(\mathbb{N}) \leq \text{card}(X)$,
4. $\text{card}(X \setminus \{x\}) = \text{card}(X)$ for some (or all) $x \in X$.

Proof. 1. \implies 2. Suppose that X is an infinite set. We show by induction that $\text{card}(J_n) \leq \text{card}(X)$ for all $n \in \mathbb{N}$. Since X is not empty, there exists $x \in X$ and we may define $f: J_1 \to X$ by $f(1) = x$ in order to learn $\text{card}(J_1) \leq \text{card}(X)$. Suppose we have shown $\text{card}(J_n) \leq \text{card}(X)$ for some $n \in \mathbb{N}$, i.e. there exists and injective map $f: J_n \to X$. If $f(J_n) = X$ it would follow that $\text{card}(X) = \text{card}(J_n)$ and would violated the assumption that X is not a finite set. Thus there exists $x \in X \setminus f(J_n)$ and we may define $f': J_{n+1} \to X$ by $f'(J_n) = f$ and $f'(n+1) = x$. Then $f': J_{n+1} \to X$ is injective and hence $\text{card}(J_{n+1}) \leq \text{card}(X)$.

2. \iff 3. This is the content of Theorem 5.18.

3. \implies 4. Let $x_1 \in X$ and $f : \mathbb{N} \to X$ be an injective map such that $f(1) = x_1$. We now define a bijections, $\psi : X \to X \setminus \{x_1\}$ by

$$
\psi(x) = \begin{cases} x & \text{if } x \neq f(0) \\
 f(i+1) & \text{if } x = f(i) \in f(0)
\end{cases}
$$

4. \implies 1. We will prove the contrapositive. If X is a finite and $x \in X$, we have seen that card$(X \setminus \{x\}) < \text{card}(X)$, namely $\#(X \setminus \{x\}) = \#(X) - 1$.

The next two theorems summarizes the properties of cardinalities that have been proven above.

Theorem 5.34 (Cardinality/Counting Summary I). Given a non-empty set X, then one and only one of the following statements holds;

1. There exists a unique $n \in \mathbb{N}$ such that $\text{card}(X) = \text{card}(J_n)$.
2. X is uncountable.
3. X is countable.

If X satisfies case 1, we say X is a **finite set.** If X satisfies case 2 we say X is a **countably infinite set** and if X satisfies case 3, we say X is an **uncountably infinite set.**

Theorem 5.35 (Cardinality/Counting Summary II). Let X and Y be sets and S be a subset of \mathbb{N}.

1. If $S \subset \mathbb{N}$ is an unbounded set, then $\text{card}(S) = \text{card}(\mathbb{N})$.
2. If $S \subset \mathbb{N}$ is a bounded set then $\text{card}(S) = \text{card}(J_n)$ for some $n \in \mathbb{N}$.
3. If $\{X_k\}_{k=1}^\infty$ are subsets of X such that $\text{card}(X_k) \leq \text{card}(\mathbb{N})$, then $\text{card}(\cup_{k=1}^\infty X_k) \leq \text{card}(\mathbb{N})$.
4. If X and Y are sets such that $\text{card}(X) \leq \text{card}(\mathbb{N})$ and $\text{card}(Y) \leq \text{card}(\mathbb{N})$, then $\text{card}(X \times Y) \leq \text{card}(\mathbb{N})$.
5. $\text{card}(\mathbb{Q}) = \text{card}(\mathbb{N}) = \text{card}(\mathbb{Z})$.
6. For any $a < b$ in \mathbb{R}, $\text{card}(\mathbb{Q} \cap (a,b)) = \text{card}(\mathbb{N})$ while $\text{card}(\mathbb{Q}^c \cap (a,b)) > \text{card}(\mathbb{N})$.

5.4.1 Exercises

Exercise 5.9. Show that \mathbb{Q}^n is countable for all $n \in \mathbb{N}$.

Exercise 5.10. Let $\mathbb{Q}[t]$ be the set of polynomial functions, p, such that p has rational coefficients. That is $p \in \mathbb{Q}[t]$ iff there exists $n \in \mathbb{N}_0$ and $a_k \in \mathbb{Q}$ for $0 \leq k \leq n$ such that

$$
p(t) = \sum_{k=0}^n a_k t^k \text{ for all } t \in \mathbb{R}.
$$

Show $\mathbb{Q}[t]$ is a countable set.
Definition 5.36 (Algebraic Numbers). A real number, $x \in \mathbb{R}$, is called algebraic number, if there is a non-zero polynomial $p \in \mathbb{Q}[t]$ such that $p(x) = 0$. [That is to say, $x \in \mathbb{R}$ is algebraic if it is the root of a non-zero polynomial with coefficients from \mathbb{Q}.]

Note that for all $q \in \mathbb{Q}$, $p(t) := t - q$ satisfies $p(q) = 0$. Hence all rational numbers are algebraic. But there are many more algebraic numbers, for example $y^{1/n}$ is algebraic for all $y \geq 0$ and $n \in \mathbb{N}$.

Exercise 5.11. Show that the set of algebraic numbers is countable. [Hint: any polynomial of degree n has at most n real roots.] In particular, “most” irrational numbers are not algebraic numbers, i.e. there is still any uncountable number of non-algebraic numbers.