The problems below either come from the lecture notes or from Folland.
HomeWork #1 Due Friday April 6, 2012

Exercise 1.1. Suppose that X is a separable Banach space. Show there exists $\varphi_n \in X^*$ such that
\[\|x\| = \sup_n |\varphi_n(x)| \quad \text{for all} \quad x \in X. \tag{1.1} \]

Use this to conclude that Borel σ–algebra of X ($\mathcal{B}_X := \sigma(\text{open balls})$) and the σ–algebra generated by $\varphi \in X^*$ are the same, i.e. $\sigma(X^*) = \mathcal{B}_X$. So if $(\Omega, \mathcal{F}, \mu)$ is a measure space and X is separable, a function $u : \Omega \to X$ is weakly integrable iff $u : \Omega \to X$ is $\mathcal{F}/\mathcal{B}_X$–measurable and
\[\int_{\Omega} \|u(\omega)\| \, d\mu(\omega) < \infty. \]

Exercise 1.2. Suppose that X and Y are Banach spaces, $T \in L(X,U)$, $(\Omega, \mathcal{B}, \mu)$ is a measure space, and $u : \Omega \to X$ is an integrable function in the sense that:
1. For all $\lambda \in X^*$, $\lambda \circ u \in L^1(\mu)$ and
2. there exists a unique element $x \in X$ (denoted by $\int_{\Omega} u(\omega) \, d\mu(\omega)$) such that $f(\int_{\Omega} u \, d\mu) = \int_{\Omega} [f \circ u] \, d\mu$ for all $f \in X^*$.
\[\int_{\Omega} T[u(\omega)] \, d\mu(\omega) = T \int_{\Omega} u(\omega) \, d\mu(\omega). \tag{1.2} \]

[For situations where the hypothesis of this exercise hold see Theorems ?? and ??.]

Exercise 1.3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and write L^p for $L^p(\Omega, \mathcal{F}, \mu)$. Show;
1. if $f \in L^p \cap L^\infty$ for some $p < \infty$, then $\|f\|_\infty = \lim_{q \to \infty} \|f\|_q$.
2. If we further assume $\mu(X) < \infty$, show $\|f\|_\infty = \lim_{q \to \infty} \|f\|_q$ for all measurable functions $f : X \to \mathbb{C}$. In particular, $f \in L^\infty$ iff $\lim_{q \to \infty} \|f\|_q < \infty$.

Hints: Use Corollary ?? on interpolation of L^p–norms (see Eq. (1.3) below) to show $\lim \sup_{q \to \infty} \|f\|_q < \|f\|_\infty$. To show $\lim \inf_{q \to \infty} \|f\|_q \geq \|f\|_\infty$, let $M < \|f\|_\infty$ and make use of Chebyshev’s inequality. Here we define
\[\lim \sup_{q \to \infty} \|f\|_q = \lim_{M \to \infty} \sup_{q \geq M} \|f\|_q \quad \text{and} \quad \lim \inf_{q \to \infty} \|f\|_q = \lim_{M \to \infty} \inf_{q \geq M} \|f\|_q. \]

Exercise 1.4. Use the inequality
\[s_1 \ldots s_n \leq \sum_{i=1}^n \frac{s_i^{p_i}}{p_i} \quad \text{for} \quad s_i \geq 0 \quad \text{and} \quad \sum_{i=1}^n \frac{1}{p_i} = 1. \]
as in the notes to give another proof of the statement that

$$\left\| \prod_{i=1}^{n} f_i \right\| \leq \prod_{i=1}^{n} \|f_i\|_{p_i}, \quad \text{where} \quad \sum_{i=1}^{n} p_i^{-1} = r^{-1}.$$

Exercise 1.5 (Part of Folland 6.3 on p. 186). Prove Eq. (??) in Corollary ???. In detail suppose that 0 < $p_0 < p_1 \leq \infty$, $\lambda \in (0, 1)$ and $p_\lambda \in (p_0, p_1)$ be defined by

$$\frac{1}{p_\lambda} = \frac{1 - \lambda}{p_0} + \frac{\lambda}{p_1}$$

as in Eq. (1.4). Show

$$\|f\|_{p_\lambda} \leq \max (\lambda, (1 - \lambda)) \left(\|f\|_{p_0} + \|f\|_{p_1}\right).$$

Hint: Use the inequality

$$st \leq \frac{s^a}{a} + \frac{t^b}{b},$$

where $a, b \geq 1$ with $a^{-1} + b^{-1} = 1$ are chosen appropriately.(see Lemma ?? for Eq. (??)) applied to the right side of the interpolation inequality;

$$\|f\|_{p_\lambda} \leq \|f\|^{1-\lambda}_{p_0} \|f\|^{\lambda}_{p_1}. \quad (1.3)$$

Proposition 1.1. Suppose that $0 < p_0 < p_1 \leq \infty$, $\lambda \in (0, 1)$ and $p_\lambda \in (p_0, p_1)$ be defined by

$$\frac{1}{p_\lambda} = \frac{1 - \lambda}{p_0} + \frac{\lambda}{p_1} \quad (1.4)$$

with the interpretation that $\lambda/p_1 = 0$ if $p_1 = \infty$. Then $L^{p_\lambda} \subseteq L^{p_0} + L^{p_1}$, i.e. every function $f \in L^{p_\lambda}$ may be written as $f = g + h$ with $g \in L^{p_0}$ and $h \in L^{p_1}$. For $1 \leq p_0 < p_1 \leq \infty$ and $f \in L^{p_0} + L^{p_1}$ let

$$\|f\| := \inf \{\|g\|_{p_0} + \|h\|_{p_1} : f = g + h\}.$$

Then $(L^{p_0} + L^{p_1}, \|\cdot\|)$ is a Banach space and the inclusion map from L^{p_λ} to $L^{p_0} + L^{p_1}$ is bounded; in fact $\|f\| \leq 2 \|f\|_{p_\lambda}$ for all $f \in L^{p_\lambda}$.

Proof. Let $M > 0$, then the local singularities of f are contained in the set $E := \{|f| > M\}$ and the behavior of f at “infinity” is solely determined by f on E', hence let $g = f1_{E}$ and $h = f1_{E'}$, so that $f = g + h$. By our earlier discussion we expect that $g \in L^{p_0}$ and $h \in L^{p_1}$ and this is the case since

$$\|g\|^p_{p_0} = \int |f|^p_{p_0} 1_{|f| > M} = M^{p_0} \int \left| \frac{f}{M} \right|^p_{p_0} 1_{|f| > M} \leq M^{p_0} \int \left| \frac{f}{M} \right|^p_{p_\lambda} 1_{|f| > M} \leq M^{p_0 - p_\lambda} \|f\|^{p_\lambda}_{p_\lambda} < \infty$$

and

$$\|h\|^p_{p_1} = \|f1_{|f| \leq M}\|^p_{p_1} = \int |f|^p_{p_1} 1_{|f| \leq M} = M^{p_1} \int \left| \frac{f}{M} \right|^p_{p_1} 1_{|f| \leq M} \leq M^{p_1} \int \left| \frac{f}{M} \right|^p_{p_\lambda} 1_{|f| \leq M} \leq M^{p_1 - p_\lambda} \|f\|^{p_\lambda}_{p_\lambda} < \infty.$$

Moreover this shows

$$\lambda = \frac{p_0}{p_\lambda} \cdot \frac{p_1 - p_\lambda}{p_1 - p_0},$$

1 A little algebra shows that λ may be computed in terms of p_0, p_λ and p_1 by
\[\|f\| \leq M^{1-p_\lambda/p_0} \|f\|_{p_\lambda}^{p_\lambda/p_0} + M^{1-p_\lambda/p_1} \|f\|_{p_\lambda}^{p_\lambda/p_1}. \]

Taking \(M = \alpha \|f\|_\lambda \) with \(\alpha > 0 \) implies

\[\|f\| \leq \left(\alpha^{1-p_\lambda/p_0} + \alpha^{1-p_\lambda/p_1} \right) \|f\|_\lambda \]

and then taking \(\alpha = 1 \) shows \(\|f\| \leq 2 \|f\|_\lambda \). The proof that \((L^{p_0} + L^{p_1}, \|\cdot\|)\) is a Banach space is left as Exercise 1.6 to the reader.

Exercise 1.6. Show \((L^{p_0} + L^{p_1}, \|\cdot\|)\) is a Banach space. **Hint:** you may find using Theorem ?? (on the sum – criteria for completeness) is helpful here.

Exercise 1.7. Folland 6.9 on p. 186.

Exercise 1.8. Folland 6.10 on p. 186. Use the strong form of the Dominated Convergence Theorem ??.

Exercise 1.9 (Fatou’s Lemma). If \(f_n \geq 0 \) and \(f_n \to f \) in measure, then \(\int f \leq \lim \inf_{n \to \infty} \int f_n \).

Exercise 1.10. Folland 6.27 on p. 196. **Hint:** see Theorem 6.20 in Folland (or Theorem ?? or the lecture notes.)

1.1 Optional exercises to ponder but not hand in.

Exercise 1.11 (Folland 6.5 on p. 186. Do not hand in this problem.). Suppose \(0 < p < q \leq \infty \). Then \(L^p \not\subset L^q \) iff \(X \) contains sets of arbitrarily small positive measure. Also \(L^q \not\subset L^p \) iff \(X \) contains sets of arbitrarily large finite measure.

Exercise 1.12. Show that Egoroff’s Theorem remains valid when the assumption \(\mu(X) < \infty \) is replaced by the assumption that \(|f_n| \leq g \in L^1 \) for all \(n \). **Hint:** make use of Theorem ?? applied to \(f_n|_{X_k} \) where \(X_k := \{|g| \geq k^{-1}\} \).
HomeWork #2 Due Friday April 13, 2012

2.1 Baire Category Theorem Exercises

Exercise 2.1. Let \((X, \tau)\) be a topological space and \(E, G\) be subsets of \(X\). Prove;

1. \(E\) is nowhere dense iff \(E^c\) has dense interior.
2. \(G \subseteq X\) is dense iff \(G \cap W \neq \emptyset\) for all \(\emptyset \neq W \subseteq_o X\).

Exercise 2.2. Recall that \(R \subseteq X\) is a residual set if \(R^c\) is meager, i.e. \(R^c\) is the countable union of nowhere dense sets. Show \(R\) is residual iff \(R = \bigcap_{n=1}^{\infty} A_n\) for some \(\{A_n\}_{n=1}^{\infty}\) such that each \(A_n\) has dense interior, i.e. \(A_n^o = X\).

Exercise 2.3. Suppose that \((X, \tau_X)\) and \((Y, \tau_Y)\) are two topological spaces and \(\varphi : X \rightarrow Y\) is a homeomorphism, i.e. \(\varphi\) is continuous, invertible, and \(\varphi^{-1}\) is continuous. Show \(\varphi (A^o) = [\varphi (A)]^o\) and \(\varphi (\overline{A}) = \overline{\varphi (A)}\) for all \(A \subseteq X\).

Exercise 2.4. Let \((X, \|\cdot\|)\) be a normed space and \(E \subseteq X\) be a subspace.

1. If \(E\) is closed and proper subspace of \(X\) then \(E\) is nowhere dense.
2. If \(E\) is a proper finite dimensional subspace of \(X\) then \(E\) is nowhere dense.

Exercise 2.5. Now suppose that \((X, \|\cdot\|)\) is an infinite dimensional Banach space. Show that \(X\) can not have a countable algebraic basis. More explicitly, there is no countable subset \(S \subseteq X\) such that every element \(x \in X\) may be written as a finite linear combination of elements from \(S\). Hint: make use of Exercise 2.4 and the Baire category theorem.

2.2 Open Mapping and Closed Operator Exercises

Exercise 2.6. Let \(T : X \rightarrow Y\) be a linear map between normed vector spaces, show \(T\) is closed (i.e. has a closed graph) iff for all convergent sequences \(\{x_n\}_{n=1}^{\infty} \subseteq X\) such that \(\{Tx_n\}_{n=1}^{\infty} \subseteq Y\) is also convergent, we have \(\lim_{n \to \infty} Tx_n = T (\lim_{n \to \infty} x_n)\) \footnote{Compare this with the statement that \(T\) is continuous iff for every convergent sequences \(\{x_n\}_{n=1}^{\infty} \subseteq X\) we have \(\{Tx_n\}_{n=1}^{\infty} \subseteq Y\) is necessarily convergent and \(\lim_{n \to \infty} Tx_n = T (\lim_{n \to \infty} x_n)\).}

Exercise 2.7. Let \(X = \ell^1 (\mathbb{N})\) equipped with the \(\ell^1 (\mathbb{N})\) – norm \((\|f\| := \sum_{n=1}^{\infty} |f(n)|)\) and let

\[
Y = \left\{ f \in X : \sum_{n=1}^{\infty} n |f(n)| < \infty \right\}.
\]

We view \(Y\) as a normed space with the same \(\ell^1 (\mathbb{N})\) – norm as \(X\). Futher let \(T : Y \rightarrow X\) be the linear transformation defined by \((Tf)(n) = nf(n)\) for all \(f \in Y\) and \(n \in \mathbb{N}\). Show:
1. Y is a proper dense subspace of X and in particular Y is not complete.
2. $T : Y \to X$ is a closed operator and is not bounded.
3. $T : Y \to X$ is algebraically invertible, $S := T^{-1} : X \to Y$ is bounded and surjective but is not an open mapping.

Exercise 2.8. Let X be a vector space equipped with two norms, $\|\cdot\|_1$ and $\|\cdot\|_2$ such that $\|\cdot\|_1 \leq \|\cdot\|_2$ and X is complete relative to both norms. Show there is a constant $C < \infty$ such that $\|\cdot\|_2 \leq C \|\cdot\|_1$.

Exercise 2.9 (No slowest decay rate). Show that it is impossible to find a “magic sequence,” $\{a_n\}_{n \in \mathbb{N}} \subset (0, \infty)$, with the following property: if $\{\lambda_n\}_{n \in \mathbb{N}}$ is a sequence in \mathbb{C}, then $\sum_{n=1}^{\infty} |\lambda_n| < \infty$ iff $\sup_n a_n^{-1} |\lambda_n| < \infty$. (Poetically speaking, there is no “slowest rate” of decay for the summands of absolutely convergent series.)

Outline: For sake of contradiction suppose such a magic sequence $\{a_n\}_{n \in \mathbb{N}} \subset (0, \infty)$ were to exists.

1. For $f \in \ell^\infty(\mathbb{N})$, let $(Tf)(n) := a_n f(n)$ for $n \in \mathbb{N}$. Verify that $Tf \in \ell^1(\mathbb{N})$ and $T : \ell^\infty(\mathbb{N}) \to \ell^1(\mathbb{N})$ is a bounded linear operator.
2. Show $T : \ell^\infty(\mathbb{N}) \to \ell^1(\mathbb{N})$ must be an invertible operator and that $T^{-1} : \ell^1(\mathbb{N}) \to \ell^\infty(\mathbb{N})$ is necessarily bounded, i.e. $T : \ell^\infty(\mathbb{N}) \to \ell^1(\mathbb{N})$ is a homeomorphism.
3. Arrive at a contradiction by showing either that T^{-1} is not bounded or by using the fact that, D, the set of finitely supported sequences, is dense in $\ell^1(\mathbb{N})$ but not in $\ell^\infty(\mathbb{N})$.

Exercise 2.10 (Do not hand in). Let $X = C([0,1])$ and $Y = C^1([0,1]) \subset X$ with both X and Y being equipped with the uniform norm. Let $T : Y \to X$ be the linear map, $Tf = f'$. Here $C^1([0,1])$ denotes those functions, $f \in C^1((0,1)) \cap C([0,1])$ such that $f'(1) := \lim_{x \uparrow 1} f'(x)$ and $f'(0) := \lim_{x \downarrow 0} f'(x)$ exist.

1. Y is a proper dense subspace of X and in particular Y is not complete.
2. $T : Y \to X$ is a closed operator which is not bounded.

2.3 Uniform Boundedness Principle Exercises

Exercise 2.11. Suppose $T : X \to Y$ is a linear map between two Banach spaces such that $f \circ T \in X^*$ for all $f \in Y^*$. Show T is bounded.

Exercise 2.12. Suppose $T_n : X \to Y$ for $n \in \mathbb{N}$ is a sequence of bounded linear operators between two Banach spaces such that $\lim_{n \to \infty} T_n x$ exists for all $x \in X$. Show $Tx := \lim_{n \to \infty} T_n x$ defines a bounded linear operator from X to Y.

Exercise 2.13. Let X be a Banach space, $\{T_n\}_{n=1}^{\infty}$ and $\{S_n\}_{n=1}^{\infty}$ be two sequences of bounded operators on X such that $T_n \to T$ and $S_n \to S$ strongly, and suppose $\{x_n\}_{n=1}^{\infty} \subset X$ such that $\lim_{n \to \infty} \|x_n - x\| = 0$. Show:

1. $T_n S_n \to TS$ strongly as $n \to \infty$ and that
2. $\lim_{n \to \infty} \|T_n x_n - T x\| = 0$.

Exercise 2.14. Let X, Y and Z be Banach spaces and $B : X \times Y \to Z$ be a bilinear map such that $B(x, \cdot) \in L(Y, Z)$ and $B(\cdot, y) \in L(X, Z)$ for all $x \in X$ and $y \in Y$. Show there is a constant $M < \infty$ such that $\|B(x, y)\| \leq M \|x\| \|y\|$ for all $(x, y) \in X \times Y$ and conclude from this that $B : X \times Y \to Z$ is continuous.