Contents

Part I Background Material

1 Limsups, Liminfs and Extended Limits ... 3
2 Basic Probabilistic Notions .. 7

Part II Formal Development

3 Preliminaries ... 13
 3.1 Set Operations .. 13
 3.2 Exercises .. 15
 3.3 Algebraic sub-structures of sets .. 15
4 Finitely Additive Measures .. 19
 4.1 Finitely Additive Measures ... 19
 4.2 Examples of Measures .. 20
 4.3 Simple Integration ... 22
 4.4 Simple Independence and the Weak Law of Large Numbers 24
 4.5 Constructing Finitely Additive Measures .. 26
5 Countably Additive Measures .. 29
 5.1 Distribution Function for Probability Measures on \((\mathbb{R}, \mathcal{B}_{\mathbb{R}})\) 29
 5.2 Construction of Premeasures .. 29
 5.3 Regularity and Uniqueness Results ... 31
 5.4 Construction of Measures .. 32
 5.5 Completions of Measure Spaces ... 34
 5.6 A Baby Version of Kolmogorov’s Extension Theorem 35
Contents

6 Random Variables
 6.1 Measurable Functions .. 37

7 Independence ... 43
 7.1 $\pi - \lambda$ and Monotone Class Theorems 43
 7.1.1 The Monotone Class Theorem (This subsection may be safely skipped!) ... 44
 7.2 Basic Properties of Independence ... 46
 7.2.1 An Example of Ranks ... 50
 7.3 Borel-Cantelli Lemmas ... 51
 7.4 Kolmogorov and Hewitt-Savage Zero-One Laws 54
Part I

Background Material
Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set \(\bar{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\} \), i.e. it is \(\mathbb{R} \) with two new points called \(\infty \) and \(-\infty \). We use the following conventions, \(\pm \infty \cdot 0 = 0 \), \(\pm \infty \cdot a = \pm \infty \) if \(a \in \mathbb{R} \) with \(a > 0 \), \(\pm \infty \cdot a = \mp \infty \) if \(a \in \mathbb{R} \) with \(a < 0 \), \(\pm \infty + \pm \infty = \infty \) and \(-\infty - \infty = -\infty \) while \(\infty - \infty \) is not defined. A sequence \(a_n \in \bar{\mathbb{R}} \) is said to converge to \(\infty \) (\(-\infty \)) if for all \(M \in \mathbb{R} \) there exists \(M \in \mathbb{N} \) such that \(a_n \geq M \) (\(a_n \leq M \)) for all \(n \geq M \).

Lemma 1.2. Suppose \(\{a_n\}_{n=1}^{\infty} \) and \(\{b_n\}_{n=1}^{\infty} \) are convergent sequences in \(\bar{\mathbb{R}} \), then:

1. If \(a_n \leq b_n \) for a.a. \(n \) then \(\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \).
2. If \(c \in \mathbb{R} \), \(\lim_{n \to \infty} (c a_n) = c \lim_{n \to \infty} a_n \).
3. If \(\{a_n + b_n\}_{n=1}^{\infty} \) is convergent and
 \[
 \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n
 \]
 provided the right side is not of the form \(\infty - \infty \).
4. \(\{a_n b_n\}_{n=1}^{\infty} \) is convergent and
 \[
 \lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n
 \]
 provided the right hand side is not of the form \(\pm \infty \cdot 0 \) of \(0 \cdot (\pm \infty) \).

Before going to the proof consider the simple example where \(a_n = n \) and \(b_n = -a_n \) with \(\alpha > 0 \). Then
\[
\lim (a_n + b_n) = \begin{cases}
\infty & \text{if } \alpha < 1 \\
0 & \text{if } \alpha = 1 \\
-\infty & \text{if } \alpha > 1
\end{cases}
\]

while
\[
\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = "\infty - \infty".
\]

This shows that the requirement that the right side of Eq. (1.1) is not of form \(\infty - \infty \) is necessary in Lemma 1.2. Similarly by considering the examples \(a_n = n \) and \(b_n = n^{-\alpha} \) with \(\alpha > 0 \) shows the necessity for assuming right hand side of Eq. (1.2) is not of form \(\infty \cdot 0 \).

Proof. The proofs of items 1. and 2. are left to the reader.

Proof of Eq. (1.2). Let \(a := \lim_{n \to \infty} a_n \) and \(b = \lim_{n \to \infty} b_n \). Case 1., suppose \(b = \infty \) in which case we must assume \(a = -\infty \). In this case, for every \(M > 0 \), there exists \(N \) such that \(b_n \geq M \) and \(a_n \geq a - 1 \) for all \(n \geq N \) and this implies \(a_n + b_n \geq M + a - 1 \) for all \(n \geq N \).

Therefore,
\[
|a - a_n| \leq \varepsilon \text{ and } |b - b_n| \leq \varepsilon \text{ for all } n \geq N.
\]

Since \(M \) is arbitrary it follows that \(a_n + b_n \to \infty \) as \(n \to \infty \). The cases where \(b = -\infty \) or \(a = \pm \infty \) are handled similarly. Case 2. If \(a, b \in \mathbb{R} \), then for every \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that
\[
|a - a_n| \leq \varepsilon \text{ and } |b - b_n| \leq \varepsilon \text{ for all } n \geq N.
\]

The proofs of items 1. and 2. are left to the reader.

Proof of Eq. (1.2). It will be left to the reader to prove the case where \(a_n \) and \(b_n \) exist in \(\mathbb{R} \). I will only consider the case where \(a = \lim_{n \to \infty} a_n \neq 0 \) and \(\lim_{n \to \infty} b_n = \infty \) here. Let us also assume that \(a > 0 \) (the case \(a < 0 \) is handled similarly) and let \(\alpha := \min \left(\frac{1}{2}, 1 \right) \). Given any \(M < \infty \), there exists \(N \in \mathbb{N} \) such that \(a_n \geq \alpha \) and \(b_n \geq M \) for all \(n \geq N \) and for this choice of \(N \), \(a_n b_n \geq M \alpha \) for all \(n \geq N \). Since \(\alpha > 0 \) is fixed and \(M \) is arbitrary it follows that \(\lim_{n \to \infty} (a_n b_n) = \infty \) as desired.

For any subset \(A \subset \mathbb{R} \), let \(\sup A \) and \(\inf A \) denote the least upper bound and greatest lower bound of \(A \) respectively. The convention being that \(\sup A = -\infty \) if \(\infty \in A \) or \(A \) is not bounded from above and \(\inf A = -\infty \) if \(-\infty \in A \) or \(A \) is not bounded from below. We will also use the conventions that \(\sup \emptyset = -\infty \) and \(\inf \emptyset = +\infty \).

Notation 1.3 Suppose that \(\{x_n\}_{n=1}^{\infty} \subset \bar{\mathbb{R}} \) is a sequence of numbers. Then
\[
\liminf x_n = \lim \inf_{n \to \infty} \{x_k : k \geq n\} \quad \text{and} \quad \limsup x_n = \lim \sup_{n \to \infty} \{x_k : k \geq n\}.
\]

We will also write \(\lim \) for \(\liminf_{n \to \infty} \) and \(\lim \) for \(\limsup_{n \to \infty} \).
Remark 1.4. Notice that if \(a_k := \inf \{ x_k : k \geq n \} \) and \(b_k := \sup \{ x_k : k \geq n \} \), then \(\{ a_k \} \) is an increasing sequence while \(\{ b_k \} \) is a decreasing sequence. Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in \(\mathbb{R} \) and

\[
\liminf_{n \to \infty} x_n = \inf \{ a_k : k \geq n \} \quad \text{and} \quad \limsup_{n \to \infty} x_n = \sup \{ b_k : k \geq n \}.
\]

The following proposition contains some basic properties of liminf and limsup.

Proposition 1.5. Let \(\{ a_n \}_{n=1}^{\infty} \) and \(\{ b_n \}_{n=1}^{\infty} \) be two sequences of real numbers. Then

1. \(\liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \), and \(\liminf_{n \to \infty} a_n \) exists in \(\mathbb{R} \) iff

\[
\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n \in \mathbb{R}.
\]

2. There is a subsequence \(\{ a_{n_k} \}_{k=1}^{\infty} \) of \(\{ a_n \}_{n=1}^{\infty} \) such that \(\lim_{k \to \infty} a_{n_k} = \limsup_{n \to \infty} a_n \). Similarly, there is a subsequence \(\{ a_{n_k} \}_{k=1}^{\infty} \) of \(\{ a_n \}_{n=1}^{\infty} \) such that \(\lim_{k \to \infty} a_{n_k} = \liminf_{n \to \infty} a_n \).

3. \(\limsup_{n \to \infty} (a_n + b_n) \leq \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n \) (1.5)

whenever the right side of this equation is not of the form \(\infty - \infty \).

4. If \(a_n \geq 0 \) and \(b_n \geq 0 \) for all \(n \in \mathbb{N} \), then

\[
\limsup_{n \to \infty} (a_n b_n) \leq \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n,
\]

provided the right hand side of (1.6) is not of the form \(0 \cdot \infty \) or \(\infty \cdot 0 \).

Proof. Item 1. will be proved here leaving the remaining items as an exercise to the reader. Since

\[
\inf \{ a_k : k \geq n \} \leq \sup \{ a_k : k \geq n \} \quad \forall n,
\]

\[
\liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n.
\]

Now suppose that \(\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = a \in \mathbb{R} \). Then for all \(\varepsilon > 0 \), there is an integer \(N \) such that

\[
a - \varepsilon \leq \inf \{ a_k : k \geq N \} \leq \sup \{ a_k : k \geq N \} \leq a + \varepsilon,
\]

i.e.

\[
a - \varepsilon \leq a \leq a + \varepsilon \quad \forall k \geq N.
\]

Hence by the definition of the limit, \(\lim_{k \to \infty} a_k = a \). If \(\liminf_{n \to \infty} a_n = \infty \), then we know for all \(M \in (0, \infty) \) there is an integer \(N \) such that

\[
M \leq \inf \{ a_k : k \geq N \}
\]

and hence \(\lim_{n \to \infty} a_n = \infty \). The case where \(\limsup_{n \to \infty} a_n = -\infty \) is handled similarly.

Conversely, suppose that \(\lim_{n \to \infty} a_n = A \in \mathbb{R} \) exists. If \(A \in \mathbb{R} \), then for every \(\varepsilon > 0 \) there exists \(N(\varepsilon) \in \mathbb{N} \) such that \(|A - a_n| \leq \varepsilon \) for all \(n \geq N(\varepsilon) \), i.e.

\[
A - \varepsilon \leq a_n \leq A + \varepsilon \quad \text{for all } n \geq N(\varepsilon).
\]

From this we learn that

\[
A - \varepsilon \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq A + \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, it follows that

\[
A \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq A,
\]

i.e. that \(A = \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n \). If \(A = \infty \), then for all \(M > 0 \) there exists \(N = N(M) \) such that \(a_n \geq M \) for all \(n \geq N \). This show that \(\liminf_{n \to \infty} a_n \geq M \) and since \(M \) is arbitrary it follows that

\[
\infty \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n.
\]

The proof for the case \(A = -\infty \) is analogous to the \(A = \infty \) case.

Proposition 1.6 (Tonelli’s theorem for sums). If \(\{ a_{kn} \}_{k,n=1}^{\infty} \) is any sequence of non-negative numbers, then

\[
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{kn}.
\]

Here we allow for one and hence both sides to be infinite.

Proof. Let

\[
M := \sup \left\{ \sum_{k=1}^{K} \sum_{n=1}^{N} a_{kn} : K, N \in \mathbb{N} \right\} = \sup \left\{ \sum_{n=1}^{N} \sum_{k=1}^{K} a_{kn} : K, N \in \mathbb{N} \right\}
\]

and

\[
L := \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn}.
\]
Since
\[L = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn} = \lim_{K \to \infty} \sum_{k=1}^{K} \sum_{n=1}^{\infty} a_{kn} = \lim_{K \to \infty} \lim_{N \to \infty} \sum_{k=1}^{K} \sum_{n=1}^{N} a_{kn} \]
and \(\sum_{k=1}^{N} \sum_{n=1}^{N} a_{kn} \leq M \) for all \(K \) and \(N \), it follows that \(L \leq M \). Conversely,
\[\sum_{k=1}^{K} \sum_{n=1}^{N} a_{kn} \leq \sum_{k=1}^{K} \sum_{n=1}^{\infty} a_{kn} \leq \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn} = L \]
and therefore taking the supremum of the left side of this inequality over \(K \) and \(N \) shows that \(M \leq L \). Thus we have shown
\[\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn} = M. \]

By symmetry (or by a similar argument), we also have that \(\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{kn} = M \) and hence the proof is complete. ■
Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represent all possible outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken to be, $\Omega = \{0, 1\}$.
2. The sample space for flipping a coin N-times could be taken to be, $\Omega = \{0, 1\}^N$.
3. If we have a roulette wheel with 40 entries, then we might take $\Omega = \{0, 1\}^N$.
4. If we throw darts at a board of radius R, we may take $\Omega = D_R^N$.
5. Suppose we release a perfume particle at location $x \in \mathbb{R}^3$ and follow its motion for all time, $0 \leq t < \infty$. In this case, we might take, $\Omega = \{\omega \in C([0, \infty), \mathbb{R}^3) : \omega(0) = x\}$.

Definition 2.3. An event is a subset of Ω.

Example 2.4. Suppose that $\Omega = \{0, 1\}^N$ is the sample space for flipping a coin an infinite number of times. Here $\omega_n = 1$ represents the fact that a head was thrown on the n^{th} toss, while $\omega_n = 0$ represents a tail on the n^{th} toss.

1. $A = \{\omega \in \Omega : \omega_3 = 1\}$ represents the event that the third toss was a head.
2. $A = \cup_{i=1}^{\infty} \{\omega \in \Omega : \omega_i = \omega_{i+1} = 1\}$ represents the event that (at least) two heads were tossed twice in a row at some time.
3. $A = \cap_{N=1}^{\infty} \cup_{n \geq N} \{\omega \in \Omega : \omega_n = 1\}$ is the event where there are infinitely many heads tossed in the sequence.
4. $A = \cup_{N=1}^{\infty} \cap_{n \geq N} \{\omega \in \Omega : \omega_n = 1\}$ is the event where heads occurs from some time onwards, i.e. $\omega \in A$ if and only if there exists, $N = N(\omega)$ such that $\omega_n = 1$ for all $n \geq N$.

Ideally we would like to assign a probability, $P(A)$, to all events $A \subset \Omega$. Given a physical experiment, we think of assigning this probability as follows. Run the experiment many times to get sample points, $\omega(n) \in \Omega$ for each $n \in \mathbb{N}$, then try to “define” $P(A)$ by

$$P(A) = \lim_{N \to \infty} \frac{1}{N} \# \{1 \leq k \leq N : \omega(k) \in A\}.$$ (2.1)

That is we think of $P(A)$ as being the long term relative frequency that the event A occurred for the sequence of experiments, $\{\omega(k)\}_{k=1}^{\infty}$.

Similarly supposed that A and B are two events and we wish to know how likely the event A is given that we now that B has occurred. Thus we would like to compute:

$$P(A|B) = \lim_{n \to \infty} \frac{\# \{k : 1 \leq k \leq n \text{ and } \omega_k \in A \cap B\}}{\# \{k : 1 \leq k \leq n \text{ and } \omega_k \in B\}.$$
which represents the frequency that \(A \) occurs given that we know that \(B \) has occurred. This may be rewritten as

\[
P(A|B) = \lim_{n \to \infty} \frac{\frac{1}{n} \# \{k : 1 \leq k \leq n \text{ and } \omega_k \in A \cap B\}}{\frac{1}{n} \# \{k : 1 \leq k \leq n \text{ and } \omega_k \in B\}}
= \frac{P(A \cap B)}{P(B)}.
\]

Definition 2.5. If \(B \) is a non-null event, i.e. \(P(B) > 0 \), define the **conditional probability of \(A \) given \(B \)** by,

\[
P(A|B) := \frac{P(A \cap B)}{P(B)}.
\]

There are of course a number of problems with this definition of \(P \) in Eq. (2.1) including the fact that it is not mathematical nor necessarily well defined. For example the limit may not exist. But ignoring these technicalities for the moment, let us point out three key properties that \(P \) should have.

1. \(P(A) \in [0,1] \) for all \(A \subset \Omega \).
2. \(P(\emptyset) = 1 \) and \(P(\Omega) = 1 \).
3. **Additivity.** If \(A \) and \(B \) are disjoint event, i.e. \(A \cap B = AB = \emptyset \), then

\[
P(A \cup B) = \lim_{N \to \infty} \frac{1}{N} \# \{1 \leq k \leq N : \omega(k) \in A \cup B\}
= \lim_{N \to \infty} \frac{1}{N} \left[\# \{1 \leq k \leq N : \omega(k) \in A\} + \# \{1 \leq k \leq N : \omega(k) \in B\} \right]
= P(A) + P(B).
\]

Example 2.6. Let us consider the tossing of a coin \(N \) times with a fair coin. In this case we would expect that every \(\omega \in \Omega \) is equally likely, i.e. \(P(\{\omega\}) = \frac{1}{2^N} \). Assuming this we are then forced to define

\[
P(A) = \frac{1}{2^N} \#(A).
\]

Observe that this probability has the following property. Suppose that \(\sigma \in \{0,1\}^k \) is a given sequence, then

\[
P(\{\omega : (\omega_1, \ldots, \omega_k) = \sigma\}) = \frac{1}{2^N} \cdot 2^{N-k} = \frac{1}{2^k}.
\]

That is if we ignore the flips after time \(k \), the resulting probabilities are the same as if we only flipped the coin \(k \) times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite number of times, so that now \(\Omega = \{0,1\}^\infty \), then we should define

\[
P(\{\omega \in \Omega : (\omega_1, \ldots, \omega_k) = \sigma\}) = \frac{1}{2^k} \tag{2.2}
\]

for any \(k \geq 1 \) and \(\sigma \in \{0,1\}^k \). Assuming there exists a probability, \(P : 2^\Omega \to [0,1] \) such that Eq. (2.2) holds, we would like to compute, for example, the probability of the event \(B \) where an infinite number of heads are tossed. To try to compute this, let

\[
A_n = \{\omega \in \Omega : \omega_n = 1\} = \{\text{heads at time } n\}
\]

and

\[
B_N := \cup_{n \geq N} A_n = \{\text{at least one heads at time } N \text{ or later}\}
\]

Since

\[
B_N^c = \cap_{n \geq N} A_n^c \subset \cap_{M \geq N} A_n^c = \{\omega \in \Omega : \omega_N = \cdots = \omega_M = 1\},
\]

we see that

\[
P(B_N^c) \leq \frac{1}{2^M-N} \to 0 \text{ as } M \to \infty.
\]

Therefore, \(P(B_N) = 1 \) for all \(N \). If we assume that \(P \) is continuous under taking decreasing limits we may conclude, using \(B_N \downarrow B \), that

\[
P(B) = \lim_{N \to \infty} P(B_N) = 1.
\]

Without this continuity assumption we would not be able to compute \(P(B) \).

The unfortunate fact is that we can not always assign a desired probability function, \(P(A) \), for all \(A \subset \Omega \). For example we have the following negative theorem.

Theorem 2.8 (No-Go Theorem). Let \(S = \{z \in \mathbb{C} : |z| = 1\} \) be the unit circle. Then there is no probability function, \(P : 2^S \to [0,1] \) such that \(P(S) = 1 \), \(P \) is invariant under rotations, and \(P \) is continuous under taking decreasing limits.

Proof. We are going to use the fact proved below in Lemma, that the continuity condition on \(P \) is equivalent to the \(\sigma \)-additivity of \(P \). For \(z \in S \) and \(N \subset S \) let

\[
zN := \{zn \in S : n \in N\},
\]

that is to say \(e^{i\theta}N \) is the set \(N \) rotated counter clockwise by angle \(\theta \). By assumption, we are supposing that
\begin{equation}
P(zN) = P(N)
\end{equation}

\text{for all } z \in S \text{ and } N \subset S.

Let
\[R := \{ z = e^{i2\pi t} : t \in \mathbb{Q} \} = \{ z = e^{i2\pi t} : t \in [0,1) \cap \mathbb{Q} \} \]
– a countable subgroup of \(S \). As above \(R \) acts on \(S \) by rotations and divides \(S \) up into equivalence classes, where \(z, w \in S \) are equivalent if \(z = rw \) for some \(r \in R \). Choose (using the axiom of choice) one representative point \(n \) from each of these equivalence classes and let \(N \subset S \) be the set of these representative points. Then every point \(z \in S \) may be uniquely written as \(z = nr \) with \(n \in N \) and \(r \in R \). That is to say
\begin{equation}
S = \sum_{r \in R} (rN).
\end{equation}

where \(\sum_{\alpha} A_\alpha \) is used to denote the union of pair-wise disjoint sets \(\{A_\alpha\} \). By Eqs. (2.4) and (2.5),
\begin{equation}
1 = P(S) = \sum_{r \in R} P(rN) = \sum_{r \in R} P(N).
\end{equation}

We have thus arrived at a contradiction, since the right side of Eq. (2.6) is either equal to \(0 \) or to \(\infty \) depending on whether \(P(N) = 0 \) or \(P(N) > 0 \).

To avoid this problem, we are going to have to relinquish the idea that \(P \) should necessarily be defined on all of \(2^\Omega \). So we are going to only define \(P \) on particular subsets, \(B \subset 2^\Omega \). We will developed this below.
Part II

Formal Development
3 Preliminaries

3.1 Set Operations

Let \(\mathbb{N} \) denote the positive integers, \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \) be the non-negative integers and \(\mathbb{Z} = \mathbb{N}_0 \cup (-\mathbb{N}) \) – the positive and negative integers including 0, \(\mathbb{Q} \) the rational numbers, \(\mathbb{R} \) the real numbers, and \(\mathbb{C} \) the complex numbers. We will also use \(\mathbb{F} \) to stand for either of the fields \(\mathbb{R} \) or \(\mathbb{C} \).

Notation 3.1 Given two sets \(X \) and \(Y \), let \(Y^X \) denote the collection of all functions \(f : X \to Y \). If \(X = \mathbb{N} \), we will say that \(f \in Y^\mathbb{N} \) is a sequence with values in \(Y \) and often write \(f_n \) for \(f(n) \) and express \(f \) as \(\{f_n\}_{n=1}^{\infty} \). If \(X = \{1, 2, \ldots, N\} \), we will write \(Y^N \) in place of \(Y^{\{1, 2, \ldots, N\}} \) and denote \(f \in Y^N \) by \(f = (f_1, f_2, \ldots, f_N) \) where \(f_n = f(n) \).

Notation 3.2 More generally if \(\{X_\alpha : \alpha \in A\} \) is a collection of non-empty sets, let \(X_A = \prod_{\alpha \in A} X_\alpha \) and \(\pi_\alpha : X_A \to X_\alpha \) be the canonical projection map defined by \(\pi_\alpha(x) = x_\alpha \). If \(X_\alpha = X \) for some fixed space \(X \), then we will write \(\prod_{\alpha \in A} X_\alpha \) as \(X^A \) rather than \(X_A \).

Recall that an element \(x \in X_A \) is a “choice function,” i.e. an assignment \(x_\alpha := x(\alpha) \in X_\alpha \) for each \(\alpha \in A \). The **axiom of choice** states that \(X_A \neq \emptyset \) provided that \(X_\alpha \neq \emptyset \) for each \(\alpha \in A \).

Notation 3.3 Given a set \(X \), let \(2^X \) denote the **power set** of \(X \) – the collection of all subsets of \(X \) including the empty set.

The reason for writing the power set of \(X \) as \(2^X \) is that if we think of 2 meaning \(\{0, 1\} \), then an element of \(a \in 2^X = \{0, 1\}^X \) is completely determined by the set

\[A := \{ x \in X : a(x) = 1 \} \subset X. \]

In this way elements in \(\{0, 1\}^X \) are in one to one correspondence with subsets of \(X \).

For \(A \in 2^X \) let

\[A^c := X \setminus A = \{ x \in X : x \notin A \} \]

and more generally if \(A, B \subset X \) let

\[B \setminus A := \{ x \in B : x \notin A \} = A \cap B^c. \]

We also define the symmetric difference of \(A \) and \(B \) by

\[A \triangle B := (B \setminus A) \cup (A \setminus B). \]

As usual if \(\{A_\alpha\}_{\alpha \in I} \) is an indexed collection of subsets of \(X \) we define the union and the intersection of this collection by

\[\bigcup_{\alpha \in I} A_\alpha := \{ x \in X : \exists \alpha \in I \ \exists x \in A_\alpha \} \]

and

\[\bigcap_{\alpha \in I} A_\alpha := \{ x \in X : x \in A_\alpha \ \forall \alpha \in I \}. \]

Notation 3.4 We will also write \(\sum_{\alpha \in I} A_\alpha \) for \(\bigcup_{\alpha \in I} A_\alpha \) in the case that \(\{A_\alpha\}_{\alpha \in I} \) are pairwise disjoint, i.e. \(A_\alpha \cap A_\beta = \emptyset \) if \(\alpha \neq \beta \).

Notice that \(\cup \) is closely related to \(\exists \) and \(\cap \) is closely related to \(\forall \). For example let \(\{A_n\}_{n=1}^{\infty} \) be a sequence of subsets from \(X \) and define

\[\inf_{k \geq n} A_n := \bigcap_{k \geq n} A_k, \]

\[\sup_{k \geq n} A_n := \bigcup_{k \geq n} A_k, \]

\[\limsup_{n \to \infty} A_n := \{A_n \text{ i.o.}\} := \{ x \in X : \# \{n : x \in A_n\} = \infty \} \]

and

\[\liminf_{n \to \infty} A_n := \{A_n \text{ a.a.}\} := \{ x \in X : x \in A_n \text{ for all } n \text{ sufficiently large}\}. \]

(One should read \(\{A_n \text{ i.o.}\} \) as \(A_n \) infinitely often and \(\{A_n \text{ a.a.}\} \) as \(A_n \) almost always.) Then \(x \in \{A_n \text{ i.o.}\} \) iff

\[\forall N \in \mathbb{N} \ \exists n \geq N \ \exists x \in A_n \]

and this may be expressed as

\[\{A_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{n \geq N} A_n. \]

Similarly, \(x \in \{A_n \text{ a.a.}\} \) iff

\[\exists N \in \mathbb{N} \ \exists n \geq N, \ x \in A_n \]

which may be written as

\[\{A_n \text{ a.a.}\} = \bigcup_{N=1}^{\infty} \bigcap_{n \geq N} A_n. \]
Lemma 3.8 (Basic Properties of Countable Sets).

A set \(A \) is countable if and only if there exists a surjective map \(f : \mathbb{N} \to X \) or \(f \) is countable.

Lemma 3.6. We have:

1. \(\{A_n \text{ i.o.}\}^c = \{A_n^c \text{ a.a.}\} \),
2. \(\limsup_{n \to \infty} A_n = \{x \in X : \sum_{n=1}^{\infty} 1_{A_n} (x) = \infty\} \),
3. \(\liminf_{n \to \infty} A_n = \{x \in X : \sum_{n=1}^{\infty} 1_{A_n^c} (x) < \infty\} \),
4. \(\sup_{k \geq n} 1_{A_k}(x) = 1_{\bigcup_{k \geq n} A_k} = 1_{\sup_{k \geq n} A_k} \),
5. \(\inf_{k \geq n} 1_{A_k}(x) = 1_{\bigcap_{k \geq n} A_k} = 1_{\inf_{k \geq n} A_k} \),
6. \(\limsup_{n \to \infty} A_n = \limsup_{n \to \infty} 1_{A_n} \), and
7. \(\liminf_{n \to \infty} A_n = \liminf_{n \to \infty} 1_{A_n} \).

Definition 3.7. A set \(X \) is said to be countable if is empty or there is an injective function \(f : X \to \mathbb{N} \). Otherwise \(X \) is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If \(A \subseteq X \) is a subset of a countable set \(X \) then \(A \) is countable.
2. Any infinite subset \(A \subseteq \mathbb{N} \) is in one to one correspondence with \(\mathbb{N} \).
3. A non-empty set \(X \) is countable iff there exists a surjective map \(g : \mathbb{N} \to X \).
4. If \(X \) and \(Y \) are countable then \(X \times Y \) is countable.
5. Suppose for each \(m \in \mathbb{N} \) that \(A_m \) is a countable subset of a set \(X \), then \(A = \bigcup_{m=1}^{\infty} A_m \) is countable. In short, the countable union of countable sets is still countable.
6. If \(X \) is an infinite set and \(Y \) is a set with at least two elements, then \(Y^X \) is uncountable. In particular \(2^X \) is uncountable for any infinite set \(X \).

Proof. 1. If \(f : X \to \mathbb{N} \) is an injective map then so is the restriction, \(f|_A \), of \(f \) to the subset \(A \). Let \(f(1) = \min A \) and define \(f \) inductively by

\[
 f(n + 1) = \min (A \setminus \{f(1), \ldots, f(n)\}).
\]

Since \(A \) is infinite the process continues indefinitely. The function \(f : \mathbb{N} \to A \) defined this way is a bijection.

2. If \(g : \mathbb{N} \to X \) is a surjective map, let

\[
 f(x) = \min \{n \in \mathbb{N} : f(n) = x\}.
\]

Then \(f : X \to \mathbb{N} \) is injective which combined with item

2. (taking \(A = f(X) \)) shows \(X \) is countable. Conversely if \(f : X \to \mathbb{N} \) is injective let \(x_0 \in X \) be a fixed point and define \(g : \mathbb{N} \to X \) by \(g(n) = f^{-1}(n) \) for \(n \in f(X) \) and \(g(n) = x_0 \) otherwise.

4. Let us first construct a bijection, \(h \), from \(\mathbb{N} \to \mathbb{N} \times \mathbb{N} \). To do this put the elements of \(\mathbb{N} \times \mathbb{N} \) into an array of the form

\[
 \begin{pmatrix}
 (1, 1) & (1, 2) & (1, 3) & \\
 (2, 1) & (2, 2) & (2, 3) & \\
 (3, 1) & (3, 2) & (3, 3) & \\
 & & & \\
 & & & \\
 & & & \\
 \end{pmatrix}
\]

and then “count” these elements by counting the sets \(\{(i, j) : i + j = k\} \) one at a time. For example let \(h(1) = (1, 1) \), \(h(2) = (2, 1) \), \(h(3) = (1, 2) \), \(h(4) = (3, 1) \), \(h(5) = (2, 2) \), \(h(6) = (1, 3) \) and so on. If \(f : \mathbb{N} \to X \) and \(g : \mathbb{N} \to Y \) are surjective functions, then the function \((f \times g) \circ h : \mathbb{N} \to X \times Y \) is surjective where \((f \times g)(m, n) := (f(m), g(n)) \) for all \((m, n) \in \mathbb{N} \times \mathbb{N} \).

5. If \(A = \emptyset \) then \(A \) is countable by definition so we may assume \(A \neq \emptyset \). Without loss of generality we may assume \(A_1 \neq \emptyset \) and by replacing \(A_m \) by \(A_1 \) if necessary we may also assume \(A_m \neq \emptyset \) for all \(m \). For each \(m \in \mathbb{N} \) let \(a_m : \mathbb{N} \to A_m \) be a surjective function and then define \(f : \mathbb{N} \times \mathbb{N} \to \bigcup_{m=1}^{\infty} A_m \) by \(f(m, n) := a_m(n) \). The function \(f \) is surjective and hence so is the composition, \(f \circ h : \mathbb{N} \to \bigcup_{m=1}^{\infty} A_m \), where \(h : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \) is the bijection above.

6. Let us begin by showing \(2^\mathbb{N} = \{0, 1\}^\mathbb{N} \) is uncountable. For sake of contradiction suppose \(f : \mathbb{N} \to \{0, 1\}^\mathbb{N} \) is a surjection and write \(f(n) \) as \((f_1(n), f_2(n), f_3(n), \ldots) \). Now define \(a \in \{0, 1\}^\mathbb{N} \) by \(a_n := 1 - f_n(n) \). By construction \(f_n(n) \neq a_n \) for all \(n \) and so \(a \notin f(N) \). This contradicts the assumption that \(f \) is surjective and shows \(2^\mathbb{N} \) is uncountable. For the general case, since \(Y_0 X \subseteq Y^X \) for any subset \(Y_0 \subseteq Y \), if \(Y_0 X \) is uncountable then so is \(Y^X \). In this way we may assume \(Y_0 \) is a two point set which may as well be \(Y_0 := \{0, 1\} \). Moreover, since \(X \) is an infinite set we may find an injective map \(i : \mathbb{N} \to X \) and use this to set up an injection, \(i : 2^\mathbb{N} \to 2^X \) by setting \(i(A) := \{x_n : n \in A\} \subseteq X \) for all \(A \subseteq \mathbb{N} \). If \(2^X \) were countable we could find a surjective map \(f : 2^X \to \mathbb{N} \) in which case \(f \circ i : 2^\mathbb{N} \to \mathbb{N} \) would be surjective as well. However this is impossible since we have already seen that \(2^\mathbb{N} \) is uncountable.

We end this section with some notation which will be used frequently in the sequel.

Notation 3.9 If \(f : X \to Y \) is a function and \(\mathcal{E} \subseteq 2^Y \) let

\[
 f^{-1}\mathcal{E} := \{f^{-1}(x) : x \in \mathcal{E}\}.
\]

If \(\mathcal{G} \subseteq 2^X \), let

\[
 f_* \mathcal{G} := \{A \subseteq 2^Y : f^{-1}(A) \in \mathcal{G}\}.
\]

Definition 3.10. Let \(\mathcal{E} \subseteq 2^X \) be a collection of sets, \(A \subseteq X \), \(i_A : A \to X \) be the inclusion map \(i_A(x) = x \) for all \(x \in A \) and \(E_A = i_A^{-1}(\mathcal{E}) = \{A \subseteq X : E \in \mathcal{E}\} \).
3.2 Exercises

Let \(f : X \rightarrow Y \) be a function and \(\{ A_i \}_{i \in I} \) be an indexed family of subsets of \(Y \), verify the following assertions.

Exercise 3.1. \(\bigcap_{i \in I} A_i = \bigcup_{i \in I} A_i^c. \)

Exercise 3.2. Suppose that \(B \subset Y \), show that \(B \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (B \setminus A_i). \)

Exercise 3.3. \(f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i). \)

Exercise 3.4. \(f^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} f^{-1}(A_i). \)

Exercise 3.5. Find a counterexample which shows that \(f(C \cap D) = f(C) \cap f(D) \) need not hold.

Example 3.11. Let \(X = \{a, b, c\} \) and \(Y = \{1, 2\} \) and define \(f(a) = f(b) = 1 \) and \(f(c) = 2 \). Then \(f(\{a\} \cap \{b\}) \neq f(\{a\}) \cap f(\{b\}) = \{1\} \) and \(\{1, 2\} = f(\{a\}^c) \neq f(\{a\})^c = \{2\}. \)

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets \(A \) of a set \(X \) is a \(\pi - system \) or multiplicative system if \(A \) is closed under taking finite intersections.

Definition 3.13. A collection of subsets \(A \) of a set \(X \) is an algebra (Field) if

1. \(\emptyset, X \in A \)
2. \(A \in A \) implies that \(A^c \in A \)
3. \(A \) is closed under finite unions, i.e. if \(A_1, \ldots, A_n \in A \) then \(A_1 \cup \cdots \cup A_n \in A \).
 In view of conditions 1. and 2., 3. is equivalent to
3'. \(A \) is closed under finite intersections.

Definition 3.14. A collection of subsets \(B \) of \(X \) is a \(\sigma - algebra \) (or sometimes called a \(\sigma - field \)) if \(B \) is an algebra which also closed under countable unions, i.e. if \(\{ A_i \}_{i=1}^\infty \subset B \), then \(\bigcup_{i=1}^\infty A_i \in B \). (Notice that since \(B \) is also closed under taking complements, \(B \) is also closed under taking countable intersections.)

Example 3.15. Here are some examples of algebras.

1. \(B = 2^X \), then \(B \) is a \(\sigma - algebra \).
2. \(B = \{\emptyset, X\} \) is a \(\sigma - algebra \) called the trivial \(\sigma - field. \)

3. Let \(X = \{1, 2, 3\} \), then \(A = \{\emptyset, X, \{1\}, \{2, 3\}\} \) is an algebra while, \(S = \{\emptyset, X, \{2\}\} \) is a not an algebra but is a \(\pi - system. \)

Proposition 3.16. Let \(\mathcal{E} \) be any collection of subsets of \(X \). Then there exists a \(\sigma \) algebra \(\sigma(\mathcal{E}) \) which contains \(\mathcal{E}. \)

Proof. Simply take
\[\mathcal{A}(\mathcal{E}) := \bigcap \{ A : A \text{ is an algebra such that } \mathcal{E} \subset A \} \]
and
\[\sigma(\mathcal{E}) := \bigcap \{ M : M \text{ is a } \sigma - \text{algebra such that } \mathcal{E} \subset M \}. \]

Exercise 3.6. Suppose that \(\mathcal{E}_i \subset 2^X \) for \(i = 1, 2 \). Show that \(\mathcal{A}(\mathcal{E}_1) = \mathcal{A}(\mathcal{E}_2) \) iff \(\mathcal{E}_1 \subset \mathcal{A}(\mathcal{E}_2) \) and \(\mathcal{E}_2 \subset \mathcal{A}(\mathcal{E}_1) \). Similarly show, \(\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2) \) iff \(\mathcal{E}_1 \subset \sigma(\mathcal{E}_2) \) and \(\mathcal{E}_2 \subset \sigma(\mathcal{E}_1) \). Give a simple example where \(\mathcal{A}(\mathcal{E}_1) = \sigma(\mathcal{E}_2) \) while \(\mathcal{E}_1 \neq \mathcal{E}_2 \).

Definition 3.18. Let \(X \) be a set. We say that a family of sets \(\mathcal{F} \subset 2^X \) is a partition of \(X \) if distinct members of \(\mathcal{F} \) are disjoint and if \(X \) is the union of the sets in \(\mathcal{F}. \)
Example 3.19. Let X be a set and $\mathcal{E} = \{A_1, \ldots, A_n\}$ where A_1, \ldots, A_n is a partition of X. In this case

$$\mathcal{A}(\mathcal{E}) = \sigma(\mathcal{E}) = \{\cup_{i \in A} A_i : A \subset \{1, 2, \ldots, n\}\}$$

where $\cup_{i \in A} A_i := \emptyset$ when $A = \emptyset$. Notice that

$$\#(\mathcal{A}(\mathcal{E})) = \#(2^{\{1,2,\ldots,n\}}) = 2^n.$$

Example 3.20. Suppose that X is a finite set and that $A \subset 2^X$ is an algebra. For each $x \in X$ let

$$A_x = \cap \{A \in \mathcal{A} : x \in A\} \in \mathcal{A},$$

wherein we have used \mathcal{A} is finite to insure $A_x \in \mathcal{A}$. Hence A_x is the smallest set in \mathcal{A} which contains x. Let $C = A_x \cap A_y \in A$. I claim that if $C \neq \emptyset$, then $A_x = A_y$. To see this, let us first consider the case where $x, y \in C$. In this case we must have $A_x \subset C$ and $A_y \subset C$ and therefore $A_x = A_y$. Now suppose either x or y is not in C. For definiteness, say $x \notin C$, i.e. $x \notin y$. Then $x \in A_x \setminus A_y \in \mathcal{A}$ from which it follows that $A_x = A_x \setminus A_y$, i.e. $A_x \cap A_y = \emptyset$.

Let us now define $\{B_i\}_{i=1}^k$ to be an enumeration of $\{A_x\}_{x \in X}$. It is now a straightforward exercise to show

$$\mathcal{A} = \{\cup_{i \in A} B_i : A \subset \{1, 2, \ldots, k\}\}.$$

Proposition 3.21. Suppose that $B \subset 2^X$ is a σ-algebra and B is at most a countable set. Then there exists a unique finite partition \mathcal{F} of X such that $\mathcal{F} \subset B$ and every element $B \in \mathcal{F}$ is of the form

$$B = \cup \{A \in \mathcal{F} : A \subset B\}. \quad \text{(3.1)}$$

In particular B is actually a finite set and $\#(B) = 2^n$ for some $n \in \mathbb{N}$.

Proof. We proceed as in Example 3.20. For each $x \in X$ let

$$A_x = \cap \{A \in B : x \in A\} \in B,$$

wherein we have used B is a countable σ-algebra to insure $A_x \in B$. Just as above either $A_x \cap A_x = \emptyset$ or $A_x = A_x$, and therefore $\mathcal{F} = \{A_x : x \in X\} \subset B$ is a (necessarily countable) partition of X for which Eq. (3.1) holds for all $B \in B$.

Enumerate the elements of \mathcal{F} as $\mathcal{F} = \{P_n\}_{n=1}^N$ where $N \in \mathbb{N}$ or $N = \infty$. If $N = \infty$, then the correspondence

$$a \in \{0, 1\}^N \rightarrow A_a = \cup \{P_n : a_n = 1\} \in B$$

is bijective and therefore, by Lemma 3.8, \mathcal{B} is uncountable. Thus any countable σ-algebra is necessarily finite. This finishes the proof modulo the uniqueness assertion which is left as an exercise to the reader.

Exercise 3.7. Let X be a set, I be an infinite index set, and $\mathcal{E} = \{A_i\}_{i \in I}$ be a partition of X. Prove the algebra, $\mathcal{A}(\mathcal{E})$, and that σ-algebra, $\sigma(\mathcal{E})$, generated by \mathcal{E} are given by

$$\mathcal{A}(\mathcal{E}) = \{\cup_{i \in A} A_i : A \subset I \text{ with } \#(A) < \infty \text{ or } \#(A^c) < \infty\}$$

and

$$\sigma(\mathcal{E}) = \{\cup_{i \in A} A_i : A \subset I \text{ with } A \text{ countable or } A^c \text{ countable}\}$$

respectively. Here we are using the convention that $\cup_{i \in A} A_i := \emptyset$ when $A = \emptyset$.

Proposition 3.23. Let X be a set and $\mathcal{E} \subset 2^X$. Let $\mathcal{E}^c := \{A^c : A \in \mathcal{E}\}$ and $\mathcal{E}^c := \mathcal{E} \cup \{X, \emptyset\} \cup \mathcal{E}^c$. Then

$$\mathcal{A}(\mathcal{E}) := \{\text{finite unions of finite intersections of elements from } \mathcal{E}\}. \quad \text{(3.2)}$$

Proof. Let \mathcal{A} denote the right member of Eq. (3.2). From the definition of an algebra, it is clear that $\mathcal{E} \subset \mathcal{A} \subset \mathcal{A}(\mathcal{E})$. Hence to finish that proof it suffices to show \mathcal{A} is an algebra. The proof of these assertions are routine except for possibly showing that \mathcal{A} is closed under complementation. To check \mathcal{A} is closed under complementation, let $Z \in \mathcal{A}$ be expressed as

$$Z = \bigcup_{i=1}^N \bigcap_{j=1}^K A_{ij}$$

where $A_{ij} \in \mathcal{E}$. Therefore, writing $B_{ij} = A_{ij}^c \in \mathcal{E}^c$, we find that

$$Z^c = \bigcap_{i=1}^N \bigcup_{j=1}^K B_{ij} = \bigcup_{j_1, \ldots, j_N=1}^K (B_{1j_1} \cap B_{2j_2} \cap \cdots \cap B_{Nj_N}) \in \mathcal{A}$$

wherein we have used the fact that $B_{1j_1} \cap B_{2j_2} \cap \cdots \cap B_{Nj_N}$ is a finite intersection of sets from \mathcal{E}^c. □

Remark 3.24. One might think that in general $\sigma(\mathcal{E})$ may be described as the countable unions of countable intersections of sets in \mathcal{E}^c. However this is in general false, since if

$$Z = \bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}$$

with $A_{ij} \in \mathcal{E}$, then
For the reverse inclusion, notice that

\[Z^c = \bigcup_{j_1=1}^{\infty} \bigcap_{j_2=1}^{\infty} \cdots \bigcap_{j_N=1}^{\infty} \bigcap_{i=1}^{\infty} A_{i,j_1} \]

which is now an uncountable union. Thus the above description is not correct. In general it is complicated to explicitly describe \(\sigma(\mathcal{E}) \), see Proposition 1.23 on page 39 of Folland for details. Also see Proposition 3.21.

Exercise 3.8. Let \(\tau \) be a topology on a set \(X \) and \(\mathcal{A} = \mathcal{A}(\tau) \) be the algebra generated by \(\tau \). Show \(\mathcal{A} \) is the collection of subsets of \(X \) which may be written as finite union of sets of the form \(F \cap V \) where \(F \) is closed and \(V \) is open.

Solution to Exercise 3.8. In this case \(\tau_c \) is the collection of sets which are either open or closed. Now if \(V_i \subset \omega X \) and \(F_j \subset X \) for each \(j \), then \((\cap_{j=1}^{m} V_i) \cap (\cap_{j=1}^{m} F_j) \) is simply a set of the form \(V \cap F \) where \(V \subset \omega X \) and \(F \subset X \). Therefore the result is an immediate consequence of Proposition 3.23.

Definition 3.25. The Borel \(\sigma \) – field, \(\mathcal{B} = \mathcal{B}_\mathbb{R} = \mathcal{B}(\mathbb{R}) \), on \(\mathbb{R} \) is the smallest \(\sigma \) – field containing all of the open subsets of \(\mathbb{R} \).

Exercise 3.9. Verify the \(\sigma \) – algebra, \(\mathcal{B}_\mathbb{R} \), is generated by any of the following collection of sets:

1. \(\{(a, \infty) : a \in \mathbb{R}\} \), 2. \(\{(a, \infty) : a \in \mathbb{Q}\} \) or 3. \(\{[a, \infty) : a \in \mathbb{Q}\} \).

Hint: make use of Exercise 3.6.

Exercise 3.10. Suppose \(f : X \to Y \) is a function, \(\mathcal{F} \subset 2^Y \) and \(\mathcal{B} \subset 2^X \). Show \(f^{-1}(\mathcal{F}) \) and \(f_* \mathcal{B} \) (see Notation 3.9) are algebras (\(\sigma \) – algebras) provided \(\mathcal{F} \) and \(\mathcal{B} \) are algebras (\(\sigma \) – algebras).

Lemma 3.26. Suppose that \(f : X \to Y \) is a function and \(\mathcal{E} \subset 2^Y \) and \(A \subset Y \) then

\[
\sigma(f^{-1}(\mathcal{E})) = f^{-1}(\sigma(\mathcal{E})) \quad \text{and} \quad \sigma(\mathcal{E}) = \sigma(f^{-1}(\mathcal{E}))
\]

where \(\mathcal{B}_A := \{B \cap A : B \in \mathcal{B}\} \). (Similar assertion hold with \(\sigma(\cdot) \) being replaced by \(\mathcal{A}(\cdot) \).

Proof. By Exercise 3.10, \(f^{-1}(\sigma(\mathcal{E})) \) is a \(\sigma \) – algebra and since \(\mathcal{E} \subset \mathcal{F} \), \(f^{-1}(\mathcal{E}) \subset f^{-1}(\sigma(\mathcal{E})) \). It now follows that

\[
\sigma(f^{-1}(\mathcal{E})) \subset f^{-1}(\sigma(\mathcal{E})).
\]

For the reverse inclusion, notice that

\[
f_* \sigma(f^{-1}(\mathcal{E})) = \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E}))\}
\]

is a \(\sigma \) – algebra which contains \(\mathcal{E} \) and thus \(\sigma(\mathcal{E}) \subset f_* \sigma(f^{-1}(\mathcal{E})) \). Hence for every \(B \in \sigma(\mathcal{E}) \) we know that \(f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E})) \), i.e.

\[
f^{-1}(\sigma(\mathcal{E})) = f_0^{-1}(\sigma(\mathcal{E})).
\]

Applying Eq. 3.3 with \(X = A \) and \(f = i_A \) being the inclusion map implies

\[
\sigma(\mathcal{E}) = \sigma\{i_A^{-1}(\mathcal{E})\} = \sigma(\mathcal{E}_A).
\]

Example 3.27. Let \(\mathcal{E} = \{(a, b] : -\infty \leq a < b < \infty\} \) and \(\mathcal{B} = \sigma(\mathcal{E}) \) be the Borel \(\sigma \) – field on \(\mathbb{R} \). Then

\[
\mathcal{E}_{(0,1]} = \{(a, b] : 0 \leq a < b \leq 1\}
\]

and we have

\[
\mathcal{B}_{(0,1]} = \sigma(\mathcal{E}(0,1])
\]

In particular, if \(A \in \mathcal{B} \) such that \(A \subset (0,1] \), then \(A \in \sigma(\mathcal{E}(0,1]) \).

Definition 3.28. A function, \(f : \Omega \to Y \) is said to be simple if \(f(\Omega) \subset Y \) is a finite set. If \(A \subset 2^\Omega \) is an algebra, we say that a simple function \(f : \Omega \to \mathbb{C} \), is called a simple random variable relative to \(A \).

Notation 3.29 Given an algebra, \(A \subset 2^\Omega \), let \(\mathcal{S}(A) \) denote the collection of simple random variables from \(\Omega \) to \(\mathbb{C} \). For example if \(A \in \mathcal{A} \), then \(\mathcal{A} \in \mathcal{S}(A) \) is a measurable simple function.

Lemma 3.30. For every algebra \(A \subset 2^\Omega \), the set simple random variables, \(\mathcal{S}(A) \), forms an algebra.

Proof. Let us observe that \(1_\Omega = 1 \) and \(1_\emptyset = 0 \) are in \(\mathcal{S}(A) \). If \(f, g \in \mathcal{S}(A) \) and \(c \in \mathbb{C} \setminus \{0\} \), then

\[
\{f + cg = \lambda\} = \bigcup_{a,b \in \mathbb{C} : a + cb = \lambda} \{(f = a) \cap (g = b)\} \in A
\]

and

\[
\{f \cdot g = \lambda\} = \bigcup_{a,b \in \mathbb{C} : ab = \lambda} \{(f = a) \cap (g = b)\} \in A
\]

from which it follows that \(f + cg \) and \(f \cdot g \) are back in \(\mathcal{S}(A) \).
Moreover, we see that bounded complex functions on X such that $1 \in S$ and each function, $f \in S$, is a simple function. If S is a simple function algebra, let

$$A(S) := \{ A \subset X : 1_A \in S \}.$$

(It is easily checked that $A(S)$ is a subalgebra of 2^X.)

Lemma 3.32. Suppose that S is a simple function algebra, $f \in S$ and $\alpha \in f(X)$. Then $\{ f = \alpha \} \in A(S)$.

Proof. Let $\{ \lambda_i \}_{i=0}^n$ be an enumeration of $f(X)$ with $\lambda_0 = \alpha$. Then

$$g := \left[\prod_{i=1}^{n} (\alpha - \lambda_i) \right]^{-1} \prod_{i=1}^{n} (f - \lambda_i 1) \in S.$$

Moreover, we see that $g = 0$ on $\bigcup_{i=1}^{n} \{ f = \lambda_i \}$ while $g = 1$ on $\{ f = \alpha \}$. So we have shown $g = 1_{(f=\alpha)} \in S$ and therefore that $\{ f = \alpha \} \in A$.

Exercise 3.11. Continuing the notation introduced above:

1. Show $A(S)$ is an algebra of sets.
2. Show $S(A)$ is a simple function algebra.
3. Show that the map

$$A \in \{ \text{Algebras} \subset 2^X \} \rightarrow S(A) \in \{ \text{simple function algebras on } X \}$$

is bijective and the map, $S \rightarrow A(S)$, is the inverse map.

Solution to Exercise [3.11].

1. Since $0 = 1_0, 1 = 1_X \in S$, it follows that 0 and X are in $A(S)$. If $A \in A(S)$, then $1_A^c = 1 - 1_A \in S$ and so $A^c \in A(S)$. Finally, if $A, B \in A(S)$ then $1_{A \cap B} = 1_A \cdot 1_B \in S$ and thus $A \cap B \in A(S)$.

2. If $f, g \in S(A)$ and $c \in \mathbb{F}$, then

$$\{ f + cg = \lambda \} = \bigcup_{a, b \in \mathbb{F} : a + cb = \lambda} \{ f = a \} \cap \{ g = b \} \in A$$

and

$$\{ f \cdot g = \lambda \} = \bigcup_{a, b \in \mathbb{F} : ab = \lambda} \{ f = a \} \cap \{ g = b \} \in A$$

from which it follows that $f + cg$ and $f \cdot g$ are back in $S(A)$.

3. If $f : \Omega \rightarrow \mathbb{C}$ is a simple function such that $1_{(f=\lambda)} \in S$ for all $\lambda \in \mathbb{C}$, then $f = \sum_{\lambda \in \mathbb{C}} 1_{(f=\lambda)} \in S$. Conversely, by Lemma 3.32 if $f \in S$ then $1_{(f=\lambda)} \in S$ for all $\lambda \in \mathbb{C}$. Therefore, a simple function, $f : X \rightarrow \mathbb{C}$ is in S iff $1_{(f=\lambda)} \in S$ for all $\lambda \in \mathbb{C}$. With this preparation, we are now ready to complete the verification.

First off,

$$A \in A(S(A)) \iff 1_A \in S(A) \iff A \in A$$

which shows that $A(S(A)) = A$. Similarly,

$$f \in S(A(S)) \iff \{ f = \lambda \} \in A(S) \forall \lambda \in \mathbb{C}$$

$$\iff 1_{(f=\lambda)} \in S \forall \lambda \in \mathbb{C}$$

$$\iff f \in S$$

which shows $S(A(S)) = S$.

Finitely Additive Measures

Definition 4.1. Suppose that $\mathcal{E} \subset 2^X$ is a collection of subsets of X and $\mu : \mathcal{E} \to [0, \infty]$ is a function. Then

1. μ is monotonic if $\mu(A) \leq \mu(B)$ for all $A, B \in \mathcal{E}$ with $A \subset B$.
2. μ is sub-additive (finitely sub-additive) on \mathcal{E} if
 \[\mu(E) \leq \sum_{i=1}^{n} \mu(E_i) \]
 whenever $E = \bigcup_{i=1}^{n} E_i \in \mathcal{E}$ with $n \in \mathbb{N} \cup \{\infty\}$ ($n \in \mathbb{N}$).
3. μ is super-additive (finitely super-additive) on \mathcal{E} if
 \[\mu(E) \geq \sum_{i=1}^{n} \mu(E_i) \]
 whenever $E = \bigcap_{i=1}^{n} E_i \in \mathcal{E}$ with $n \in \mathbb{N} \cup \{\infty\}$ ($n \in \mathbb{N}$).
4. μ is additive or finitely additive on \mathcal{E} if
 \[\mu(E) = \sum_{i=1}^{n} \mu(E_i) \]
 whenever $E = \bigcup_{i=1}^{n} E_i \in \mathcal{E}$ with $E_i \in \mathcal{E}$ for $i = 1, 2, \ldots, n < \infty$.
5. If $\mathcal{E} = \mathcal{A}$ is an algebra, $\mu(\emptyset) = 0$, and μ is finitely additive on \mathcal{A}, then μ is said to be a finitely additive measure.
6. μ is σ-additive (or countable additive) on \mathcal{E} if item 4. holds even when $n = \infty$.
7. If $\mathcal{E} = \mathcal{A}$ is an algebra, $\mu(\emptyset) = 0$, and μ is σ-additive on \mathcal{A} then μ is called a premeasure on \mathcal{A}.
8. A measure is a premeasure, $\mu : \mathcal{B} \to [0, \infty]$, where \mathcal{B} is a σ-algebra. We say that μ is a probability measure if $\mu(X) = 1$.

4.1 Finitely Additive Measures

Proposition 4.2 (Basic properties of finitely additive measures). Suppose μ is a finitely additive measure on an algebra, $\mathcal{A} \subset 2^X$, $E, F \in \mathcal{A}$ with $E \subset F$ and $\{E_j\}_{j=1}^{n} \subset \mathcal{A}$, then:

1. (μ is monotone) $\mu(E) \leq \mu(F)$ if $E \subset F$.
2. For $A, B \in \mathcal{A}$, the following strong additivity formula holds:
 \[\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B) \].
3. (μ is finitely subadditive) $\mu(\bigcup_{j=1}^{n} E_j) \leq \sum_{j=1}^{n} \mu(E_j)$.
4. μ is sub-additive on \mathcal{A} iff
 \[\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i) \]
 (4.4)
 where $A \in \mathcal{A}$ and $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$ are pairwise disjoint sets.
5. (μ is countably superadditive) If $A = \bigcup_{i=1}^{\infty} A_i$ with $A_i \in \mathcal{A}$, then
 \[\mu \left(\sum_{i=1}^{\infty} A_i \right) \geq \sum_{i=1}^{\infty} \mu(A_i) \].
6. A finitely additive measure, μ, is a premeasure iff μ is sub-additive.

Proof.

1. Since F is the disjoint union of E and $(F \setminus E)$ and $F \setminus E = F \cap E^c \in \mathcal{A}$ it follows that
 \[\mu(F) = \mu(E) + \mu(F \setminus E) \geq \mu(E) \].
2. Since
 \[A \cup B = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup A \cap B, \]
 \[\mu(A \cup B) = \mu(A \cup B \setminus (A \cap B)) + \mu(A \cap B) \]
 \[= \mu(A \setminus (A \cap B)) + \mu(B \setminus (A \cap B)) + \mu(A \cap B). \]

Adding $\mu(A \cap B)$ to both sides of this equation proves Eq. (4.3).
3. Let $\tilde{E}_j = E_j \setminus (E_1 \cup \cdots \cup E_{j-1})$ so that the \tilde{E}_j’s are pair-wise disjoint and $E = \bigcup_{j=1}^{n} \tilde{E}_j$. Since $\tilde{E}_j \subset E_j$ it follows from the monotonicity of μ that
 \[\mu(E) = \sum \mu(\tilde{E}_j) \leq \sum \mu(E_j) \].
4. If \(A = \bigcup_{i=1}^{\infty} B_i \) with \(A \in \mathcal{A} \) and \(B_i \in \mathcal{B} \), then \(A = \sum_{i=1}^{\infty} A_i \) where \(A_i := B_i \setminus (B_1 \cup \ldots \cup B_{i-1}) \in \mathcal{A} \) and \(B_0 = \emptyset \). Therefore using the monotonicity of \(\mu \) and Eq. (4.4)
\[
\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i) \leq \sum_{i=1}^{\infty} \mu(B_i).
\]
5. Suppose that \(A = \sum_{i=1}^{\infty} A_i \) with \(A_i, A \in \mathcal{A} \), then \(\sum_{i=n}^{\infty} A_i \in \mathcal{A} \) for all \(n \) and so by the monotonicity and finite additivity of \(\mu, \sum_{i=1}^{n} \mu(A_i) \leq \mu(A) \).

Letting \(n \to \infty \) in this equation shows \(\mu \) is superadditive.

6. This is a combination of items 5. and 6.

Proposition 4.3. Suppose that \(P \) is a finitely additive probability measure on an algebra, \(\mathcal{A} \subseteq 2^\Omega \). Then the following are equivalent:

1. \(P \) is \(\sigma \)-additive on \(\mathcal{A} \).
2. For all \(A_n \in \mathcal{A} \) such that \(A_n \uparrow A \in \mathcal{A} \), \(P(A_n) \uparrow P(A) \).
3. For all \(A_n \in \mathcal{A} \) such that \(A_n \downarrow A \in \mathcal{A} \), \(P(A_n) \downarrow P(A) \).
4. For all \(A_n \in \mathcal{A} \) such that \(A_n \uparrow \Omega \), \(P(A_n) \uparrow 1 \).
5. For all \(A_n \in \mathcal{A} \) such that \(A_n \downarrow \Omega \), \(P(A_n) \downarrow 1 \).

Proof. We will start by showing 1 \(\iff \) 2 \(\iff \) 3.

1 \(\implies \) 2. Suppose \(A_n \in \mathcal{A} \) such that \(A_n \uparrow A \in \mathcal{A} \). Let \(A_n' := A_n \setminus A_{n-1} \) with \(A_0 := \emptyset \). Then \(\{A_n'\}_{n=1}^{\infty} \) are disjoint, \(A_n = \bigcup_{k=1}^{n} A'_k \) and \(A = \bigcup_{k=1}^{\infty} A'_k \).

Therefore,
\[
P(A) = \sum_{k=1}^{\infty} P(A'_k) = \lim_{n \to \infty} \sum_{k=1}^{n} P(A'_k) = \lim_{n \to \infty} P(\bigcup_{k=1}^{n} A'_k) = \lim_{n \to \infty} P(A_n).
\]

2 \(\implies \) 1. If \(\{A_n\}_{n=1}^{\infty} \) is disjoint and \(A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \), then \(\bigcup_{n=1}^{\infty} A_n \uparrow A \).

Therefore,
\[
P(A) = \lim_{N \to \infty} P(\bigcup_{n=1}^{N} A_n) = \lim_{N \to \infty} \sum_{n=1}^{N} P(A_n) = \lim_{n \to \infty} P(A_n).
\]

2 \(\implies \) 3. If \(A_n \in \mathcal{A} \) such that \(A_n \downarrow A \in \mathcal{A} \), then \(A_n' \downarrow A^c \) and therefore,
\[
\lim_{n \to \infty} (1 - P(A_n)) = \lim_{n \to \infty} P(A_n^c) = P(A^c) = 1 - P(A).
\]

3 \(\implies \) 2. If \(A_n \in \mathcal{A} \) such that \(A_n \uparrow A \in \mathcal{A} \), then \(A_n^c \downarrow A^c \) and therefore we again have,
\[
\lim_{n \to \infty} (1 - P(A_n)) = \lim_{n \to \infty} P(A_n^c) = P(A^c) = 1 - P(A).
\]

It is clear that 2 \(\implies \) 4 and that 3 \(\implies \) 5. To finish the proof we will show 5 \(\implies \) 2 and 5 \(\implies \) 3.

5 \(\implies \) 2. If \(A_n \in \mathcal{A} \) such that \(A_n \uparrow A \in \mathcal{A} \), then \(A \setminus A_n \in \emptyset \) and therefore
\[
\lim_{n \to \infty} [P(A) - P(A_n)] = \lim_{n \to \infty} P(A \setminus A_n) = 0.
\]

5 \(\implies \) 3. If \(A_n \in \mathcal{A} \) such that \(A_n \uparrow A \in \mathcal{A} \), then \(A \setminus A_n \in \emptyset \). Therefore,
\[
\lim_{n \to \infty} [P(A_n) - P(A)] = \lim_{n \to \infty} P(A_n \setminus A) = 0.
\]

Remark 4.4. Observe that the equivalence of items 1. and 2. in the above proposition hold without the restriction that \(P(\Omega) = 1 \) and in fact \(P(\Omega) = \infty \) may be allowed for this equivalence.

Definition 4.5. Let \((\Omega, \mathcal{B}) \) be a measurable space, i.e. \(\mathcal{B} \subseteq 2^\Omega \) is a \(\sigma \)-algebra. A probability measure on \((\Omega, \mathcal{B}) \) is a finitely additive probability measure, \(P : \mathcal{B} \to [0,1] \) such that any and hence all of the continuity properties in Proposition 4.3 hold. We will call \((\Omega, \mathcal{B}, P)\) a probability space.

Lemma 4.6. Suppose that \((\Omega, \mathcal{B}, P)\) is a probability space, then \(P \) is countably sub-additive.

Proof. Suppose that \(A_n \in \mathcal{B} \) and let \(A_1 := A_1 \) and for \(n \geq 2 \), let \(A_n' := A_n \setminus (A_1 \cup \ldots \cup A_{n-1}) \in \mathcal{B} \). Then
\[
P(\bigcup_{n=1}^{\infty} A_n) = P(\bigcup_{n=1}^{\infty} A_n') = \sum_{n=1}^{\infty} P(A_n') \leq \sum_{n=1}^{\infty} P(A_n).
\]

4.2 Examples of Measures

Most \(\sigma \)-algebras and \(\sigma \)-additive measures are somewhat difficult to describe and define. However, there are a few special cases where we can describe explicitly what is going on.

Example 4.7. Suppose that \(\Omega \) is a finite set, \(\mathcal{B} := 2^\Omega \), and \(p : \Omega \to [0,1] \) is a function such that
\[
\sum_{\omega \in \Omega} p(\omega) = 1.
\]

Then
\[
P(A) := \sum_{\omega \in A} p(\omega) \mbox{ for all } A \subseteq \Omega
\]
defines a measure on \(2^\Omega \).
Example 4.8. Suppose that \(X \) is any set and \(x \in X \) is a point. For \(A \subset X \), let

\[
\delta_x(A) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A.
\end{cases}
\]

Then \(\mu = \delta_x \) is a measure on \(X \) called the Dirac delta measure at \(x \).

Example 4.9. Suppose that \(\mu \) is a measure on \(X \) and \(\lambda > 0 \), then \(\lambda \cdot \mu \) is also a measure on \(X \). Moreover, if \(\{ \mu_j \}_{j \in J} \) are all measures on \(X \), then \(\mu = \sum_{j=1}^{\infty} \mu_j \), i.e.

\[
\mu(A) = \sum_{j=1}^{\infty} \mu_j(A) \quad \text{for all } A \subset X
\]

is a measure on \(X \). (See Section 3.1 for the meaning of this sum.) To prove this we must show that \(\mu \) is countably additive. Suppose that \(\{ A_i \}_{i=1}^{\infty} \) is a collection of pair-wise disjoint subsets of \(X \), then

\[
\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu_j(A_i) = \sum_{j=1}^{\infty} \mu_j(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} A_i)
\]

wherein the third equality we used Theorem 1.8 and in the fourth we used that fact that \(\mu_j \) is a measure.

Example 4.10. Suppose that \(X \) is a set \(: X \to [0, \infty] \) is a function. Then

\[
\mu := \sum_{x \in X} \lambda(x) \delta_x
\]

is a measure, explicitly

\[
\mu(A) = \sum_{x \in A} \lambda(x)
\]

for all \(A \subset X \).

Example 4.11. Suppose that \(\mathcal{F} \subset 2^X \) is a countable or finite partition of \(X \) and \(\mathcal{B} \subset 2^X \) is the \(\sigma \) – algebra which consists of the collection of sets \(A \subset X \) such that

\[
A = \bigcup \{ \alpha \in \mathcal{F} : \alpha \subset A \}.
\]

Any measure \(\mu : \mathcal{B} \to [0, \infty] \) is determined uniquely by its values on \(\mathcal{F} \). Conversely, if we are given any function \(\lambda : \mathcal{F} \to [0, \infty] \) we may define, for \(A \in \mathcal{B} \),

\[
\mu(A) = \sum_{\alpha \in \mathcal{F}} \lambda(\alpha) 1_{\alpha \subset A}
\]

where \(1_{\alpha \subset A} \) is one if \(\alpha \subset A \) and zero otherwise. We may check that \(\mu \) is a measure on \(\mathcal{B} \). Indeed, if \(A = \bigcup_{i=1}^{\infty} A_i \) and \(\alpha \in \mathcal{F} \), then \(\alpha \subset A \) iff \(\alpha \subset A_i \) for one and hence exactly one \(A_i \). Therefore \(1_{\alpha \subset A} = \sum_{i=1}^{\infty} 1_{\alpha \subset A_i} \) and hence

\[
\mu(A) = \sum_{\alpha \in \mathcal{F}} \lambda(\alpha) 1_{\alpha \subset A} = \sum_{\alpha \in \mathcal{F}} \lambda(\alpha) \sum_{i=1}^{\infty} 1_{\alpha \subset A_i} = \sum_{i=1}^{\infty} \sum_{\alpha \in \mathcal{F}} \lambda(\alpha) 1_{\alpha \subset A_i} = \sum_{i=1}^{\infty} \mu(A_i)
\]

as desired. Thus we have shown that there is a one to one correspondence between measures \(\mu \) on \(\mathcal{B} \) and functions \(\lambda : \mathcal{F} \to [0, \infty] \).

The following example explains what is going on in a more typical case of interest to us in the sequel.

Example 4.12. Suppose that \(\Omega = \mathbb{R}, \mathcal{A} \) consists of those sets, \(A \subset \mathbb{R} \) which may be written as finite disjoint unions from

\[
\mathcal{S} := \{ [a, b] \cap \mathbb{R} : -\infty \leq a < b \leq \infty \}.
\]

We will show below the following:

1. \(\mathcal{A} \) is an algebra. (Recall that \(\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}) \).)
2. To every increasing function, \(F : \mathbb{R} \to [0, 1] \) such that

\[
F(-\infty) := \lim_{x \to -\infty} F(x) = 0 \quad \text{and} \quad F(+\infty) := \lim_{x \to +\infty} F(x) = 1
\]

there exists a finitely additive probability measure, \(P = P_F \) on \(\mathcal{A} \) such that

\[
P([a, b] \cap \mathbb{R}) = F(b) - F(a) \quad \text{for all} \quad -\infty \leq a < b \leq \infty.
\]

3. \(P \) is \(\sigma \) – additive on \(\mathcal{A} \) if \(F \) is right continuous.
4. \(P \) extends to a probability measure on \(\mathcal{B}_{\mathbb{R}} \) if \(F \) is right continuous.

Let us observe directly that if \(F(a+) := \lim_{x \uparrow a} F(x) \neq F(a) \), then \((a, a + 1/n] \nsubseteq \emptyset \) while

\[
P((a, a + 1/n]) = F(a + 1/n) - F(a) \downarrow F(a) + F(a) - F(a) > 0.
\]

Hence \(P \) cannot be \(\sigma \) – additive on \(\mathcal{A} \) in this case.
4.3 Simple Integration

Definition 4.13 (Simple Integral). Suppose now that P is a finitely additive probability measure on an algebra $\mathcal{A} \subset 2^\Omega$. For $f \in \mathcal{S}(\mathcal{A})$ the integral or expectation, $E(f) = E_P(f)$, is defined by

$$E_P(f) = \sum_{y \in \mathcal{C}} y P(f = y). \tag{4.6}$$

Example 4.14. Suppose that $A \in \mathcal{A}$, then

$$E_1 A = 0 \cdot P(A^c) + 1 \cdot P(A) = P(A). \tag{4.7}$$

Remark 4.15. Let us recall that our intuitive notion of $P(A)$ was given as in Eq. (2.1) by

$$P(A) = \lim_{N \to \infty} \frac{1}{N} \# \{1 \leq k \leq N : \omega(k) \in A \}$$

where $\omega(k) \in \Omega$ was the result of the k^{th} “independent” experiment. If we use this interpretation back in Eq. (4.6), we arrive at

$$E(f) = \sum_{y \in \mathcal{C}} y P(f = y) = \lim_{N \to \infty} \frac{1}{N} \sum_{y \in \mathcal{C}} y \cdot \# \{1 \leq k \leq N : f(\omega(k)) = y \}
= \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \sum_{y \in \mathcal{C}} \delta_{f(\omega(k)) = y} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(\omega(k)) \cdot \delta_{f(\omega(k)) = y}
= \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} f(\omega(k)).$$

Thus informally, $E f$ should represent the average of the values of f over many “independent” experiments.

Proposition 4.16. The expectation operator, $E = E_P$, satisfies:

1. If $f \in \mathcal{S}(\mathcal{A})$ and $\lambda \in \mathbb{C}$, then

$$E(\lambda f) = \lambda E(f). \tag{4.8}$$

2. If $f, g \in \mathcal{S}(\mathcal{A})$, then

$$E(f + g) = E(g) + E(f). \tag{4.9}$$

3. E is positive, i.e. $E(f) \geq 0$ if f is a non-negative measurable simple function.

4. For all $f \in \mathcal{S}(\mathcal{A})$,

$$|E f| \leq E |f|. \tag{4.10}$$

Proof.

1. If $\lambda \neq 0$, then

$$E(\lambda f) = \sum_{y \in \mathcal{C} \cup \{\infty\}} y P(\lambda f = y) = \sum_{y \in \mathcal{C} \cup \{\infty\}} y P(f = y/\lambda)
= \sum_{z \in \mathcal{C} \cup \{\infty\}} \lambda z P(f = z) = \lambda E(f).$$

The case $\lambda = 0$ is trivial.

2. Writing $\{f = a, g = b\}$ for $f^{-1}(\{a\}) \cap g^{-1}(\{b\})$, then

$$E(f + g) = \sum_{z \in \mathcal{C}} z P(f + g = z)
= \sum_{z \in \mathcal{C}} z P(\cup_{a + b = z} \{f = a, g = b\})
= \sum_{z \in \mathcal{C}} \sum_{a + b = z} P(\{f = a, g = b\})
= \sum_{a, b} (a + b) P(\{f = a, g = b\}).$$

But

$$\sum_{a, b} a P(\{f = a, g = b\}) = \sum_{a} a \sum_{b} P(\{f = a, g = b\})
= \sum_{a} a P(\cup_{b} \{f = a, g = b\})
= \sum_{a} a P(\{f = a\}) = E f$$

and similarly,

$$\sum_{a, b} b P(\{f = a, g = b\}) = E g.$$

Equation (4.9) is now a consequence of the last three displayed equations.

3. If $f \geq 0$ then

$$E(f) = \sum_{a \geq 0} a P(f = a) \geq 0.$$
4. First observe that
\[|f| = \sum_{\lambda \in \mathcal{C}} |\lambda| \mathbf{1}_{f=\lambda} \]
and therefore,
\[\mathbb{E}|f| = \mathbb{E} \sum_{\lambda \in \mathcal{C}} |\lambda| \mathbf{1}_{f=\lambda} = \sum_{\lambda \in \mathcal{C}} |\lambda| \mathbb{E}\mathbf{1}_{f=\lambda} = \sum_{\lambda \in \mathcal{C}} |\lambda| \mathbb{P}(f = \lambda) \leq \max |f|. \]
On the other hand,
\[|\mathbb{E}f| = \left| \sum_{\lambda \in \mathcal{C}} \lambda \mathbb{P}(f = \lambda) \right| \leq \sum_{\lambda \in \mathcal{C}} |\lambda| \mathbb{P}(f = \lambda) = \mathbb{E}|f|. \]

Remark 4.17. Every simple measurable function, \(f : \Omega \to \mathbb{C} \), may be written as \(\text{a} = \sum_{j=1}^{N} \lambda_j \mathbf{1}_{A_j}, \) for some \(\lambda_j \in \mathbb{C} \) and some \(A_j \in \mathcal{C} \). Moreover if \(f \) is represented this way, then
\[\mathbb{E}f = \mathbb{E} \left[\sum_{j=1}^{N} \lambda_j \mathbf{1}_{A_j} \right] = \sum_{j=1}^{N} \lambda_j \mathbb{E}\mathbf{1}_{A_j} = \sum_{j=1}^{N} \lambda_j \mathbb{P}(A_j). \]

Remark 4.18 (Chebyshev’s Inequality). Suppose that \(f \in \mathcal{S}(\mathcal{A}), \varepsilon > 0, \) and \(p > 0, \) then
\[P \left(\{|f| \geq \varepsilon\} \right) = \mathbb{E} \left[\mathbf{1}_{|f| \geq \varepsilon} \right] \leq \mathbb{E} \left[\frac{|f|^p}{\varepsilon^p} \mathbf{1}_{|f| \geq \varepsilon} \right] \leq \varepsilon^{-p} \mathbb{E}|f|^p. \]
Observe that
\[|f|^p = \sum_{\lambda \in \mathcal{C}} |\lambda|^p \mathbf{1}_{f=\lambda} \]
is a simple random variable and \(\{|f| \geq \varepsilon\} = \sum_{|\lambda| \geq \varepsilon} \{f = \lambda\} \in \mathcal{A} \) as well. Therefore, \(|f|^p \mathbf{1}_{f \geq \varepsilon} \) is still a simple random variable.

Lemma 4.19 (Inclusion Exclusion Formula). If \(A_n \in \mathcal{A} \) for \(n = 1, 2, \ldots, M \) such that \(\mu (\bigcup_{n=1}^{M} A_n) < \infty, \) then
\[\mu \left(\bigcup_{n=1}^{M} A_n \right) = \sum_{k=1}^{M} (-1)^{k+1} \sum_{1 \leq n_1 < n_2 < \cdots < n_k \leq M} \mu \left(A_{n_1} \cap \cdots \cap A_{n_k} \right). \]

Proof. This may be proved inductively from Eq. 4.3. We will give a different and perhaps more illuminating proof here. Let \(A := \bigcup_{n=1}^{M} A_n. \)
Since \(A^c = \left(\bigcup_{n=1}^{M} A_n \right)^c = \bigcap_{n=1}^{M} A_n, \) we have
\[1 - A = 1_{A^c} = \prod_{n=1}^{M} 1_{A_n} = \prod_{n=1}^{M} (1 - 1_{A_n}) \]
and
\[= \sum_{k=0}^{M} (-1)^k \sum_{0 \leq n_1 < n_2 < \cdots < n_k \leq M} 1_{A_{n_1} \cap \cdots \cap A_{n_k}} \]
from which it follows that
\[1_{\bigcup_{n=1}^{M} A_n} = 1_A = \sum_{k=1}^{M} (-1)^{k+1} \sum_{1 \leq n_1 < n_2 < \cdots < n_k \leq M} 1_{A_{n_1} \cap \cdots \cap A_{n_k}}. \]
Taking expectations of this equation then gives Eq. 4.12.

Remark 4.20. Here is an alternate proof of Eq. 4.13. Let \(\omega \in \Omega \) and by relabeling the sets \(\{A_n\} \) if necessary, we may assume that \(\omega \in A_1 \cap \cdots \cap A_m \) and \(\omega \notin A_{m+1} \cup \cdots \cup A_M \) for some \(0 \leq m \leq M. \) (When \(m = 0, \) both sides of Eq. 4.13 are zero and so we will only consider the case where \(1 \leq m \leq M. \) With this notation we have
\[\sum_{k=1}^{M} (-1)^{k+1} \sum_{1 \leq n_1 < n_2 < \cdots < n_k \leq M} 1_{A_{n_1} \cap \cdots \cap A_{n_k}} (\omega) \]
and
\[= \sum_{k=1}^{m} (-1)^{k+1} \sum_{1 \leq n_1 < n_2 < \cdots < n_k \leq m} 1_{A_{n_1} \cap \cdots \cap A_{n_k}} (\omega) \]
and
\[= \sum_{k=1}^{m} (-1)^{k+1} \left(\begin{array}{c} m \\ k \end{array} \right) \]
\[= 1 - \sum_{k=0}^{m} (-1)^k \left(\begin{array}{c} m \\ k \end{array} \right) \]
\[= 1 - (1 - 1)^m = 1. \]
This verifies Eq. 4.13 since \(1_{\bigcup_{n=1}^{M} A_n} (\omega) = 1. \)

Example 4.21 (Coincidences). Let \(\Omega \) be the set of permutations (think of card shuffling), \(\omega : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}, \) and define \(P(A) := \frac{\mu(A)}{n!} \) to be the uniform distribution (Haar measure) on \(\mathcal{O}. \) We wish to compute the probability of the event, \(B, \) that a random permutation fixes some index \(i. \) To do this, let \(A_i := \{\omega \in \Omega : \omega(i) = i\} \) and observe that \(B = \bigcup_{i=1}^{n} A_i \). So by the Inclusion Exclusion Formula, we have
4 Finitely Additive Measures

\[P(B) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} P(A_{i_1} \cap \cdots \cap A_{i_k}). \]

Since

\[P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(\{\omega \in \Omega : \omega(i_1) = i_1, \ldots, \omega(i_k) = i_k\}) = \frac{(n-k)!}{n!} \]

and

\[\#\{1 \leq i_1 < i_2 < \cdots < i_k \leq n\} = \binom{n}{k}, \]

we find

\[P(B) = -\sum_{k=1}^{n} (-1)^{k} \frac{1}{k!} \cong -\left(e^{-1} - 1 \right) \cong 0.632. \]

For large \(n \) this gives,

\[P(B) = -\sum_{k=1}^{n} (-1)^{k} \frac{1}{k!} \cong -\left(e^{-1} - 1 \right) \cong 0.632. \]

Example 4.22. Continue the notation in Example 4.21. We now wish to compute the expected number of fixed points of a random permutation, \(\omega \), i.e. how many cards in the shuffled stack have not moved on average. To this end, let

\[X_i = 1_{A_i}, \]

and observe that

\[N(\omega) = \sum_{i=1}^{n} X_i(\omega) = \sum_{i=1}^{n} 1_{\omega(i) = i} = \#\{i : \omega(i) = i\}. \]

denote the number of fixed points of \(\omega \). Hence we have

\[\mathbb{E}N = \sum_{i=1}^{n} \mathbb{E}X_i = \sum_{i=1}^{n} P(A_i) = \sum_{i=1}^{n} \frac{(n-1)!}{n!} = 1. \]

Let us check the above formula when \(n = 6 \). In this case we have

\[
\begin{array}{c|ccc|c}
\omega & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 2 & 5 \\
3 & 2 & 1 & 3 & 5 \\
4 & 3 & 2 & 1 & 6 \\
5 & 4 & 3 & 2 & 1 \\
6 & 5 & 4 & 3 & 2 \\
\end{array}
\]

and so

\[P(\exists \text{ a fixed point}) = \frac{4}{6} = \frac{2}{3}. \]

while

\[\sum_{k=1}^{3} (-1)^{k+1} \frac{1}{k!} = 1 - \frac{1}{2} + \frac{1}{6} = \frac{2}{3} \]

and

\[\mathbb{E}N = \frac{1}{6} (3 + 1 + 1 + 0 + 0 + 1) = 1. \]

4.4 Simple Independence and the Weak Law of Large Numbers

For the next two problems, let \(A \) be a finite set, \(n \in \mathbb{N}, \Omega = A^n \), and \(X_i : \Omega \to A \) be defined by \(X_i(\omega) = \omega(i) \) for \(\omega \in \Omega \) and \(i = 1, 2, \ldots, n \). We further suppose \(p : \Omega \to [0,1] \) is a function such that

\[\sum_{\omega \in \Omega} p(\omega) = 1 \]

and \(P : 2^\Omega \to [0,1] \) is the probability measure defined by

\[P(A) := \sum_{\omega \in A} p(\omega) \text{ for all } A \in 2^\Omega. \] (4.14)

Exercise 4.1 (Simple Independence 1.). Suppose \(q_i : A \to [0,1] \) are functions such that \(\sum_{\lambda \in A} q_i(\lambda) = 1 \) for \(i = 1, 2, \ldots, n \) and if \(p(\omega) = \prod_{i=1}^{n} q_i(\omega_i) \). Show for any functions, \(f_i : A \to \mathbb{R} \) that

\[\mathbb{E}_P \left[\prod_{i=1}^{n} f_i(X_i) \right] = \prod_{i=1}^{n} \mathbb{E}_P[f_i(X_i)] = \prod_{i=1}^{n} \mathbb{E}_{Q_i} f_i \]

where \(Q_i(\gamma) = \sum_{\lambda \in \gamma} q_i(\lambda) \) for all \(\gamma \subset A \).

Exercise 4.2 (Simple Independence 2.). Prove the converse of the previous exercise. Namely, if

\[\mathbb{E}_P \left[\prod_{i=1}^{n} f_i(X_i) \right] = \prod_{i=1}^{n} \mathbb{E}_P[f_i(X_i)] \] (4.15)

for any functions, \(f_i : A \to \mathbb{R} \), then there exists functions \(q_i : A \to [0,1] \) with \(\sum_{\lambda \in A} q_i(\lambda) = 1 \), such that \(p(\omega) = \prod_{i=1}^{n} q_i(\omega_i) \).
Exercise 4.3 (A Weak Law of Large Numbers). Suppose that \(A \subset \mathbb{R} \) is a finite set, \(n \in \mathbb{N}, \Omega = A^n, p(\omega) = \prod_{i=1}^{n} q(\omega_i) \) where \(q : A \to [0,1] \) such that \(\sum_{\lambda \in A} q(\lambda) = 1 \), and let \(P : 2^\Omega \to [0,1] \) be the probability measure defined as in Eq. (4.14). Further let \(X_i(\omega) = \omega_i \) for \(i = 1, 2, \ldots, n, \xi := E X_i, \sigma^2 := E (X_i - \xi)^2 \), and
\[
S_n = \frac{1}{n} (X_1 + \cdots + X_n).
\]

1. Show, \(\xi = \sum_{\lambda \in A} \lambda q(\lambda) \) and
\[
\sigma^2 = \sum_{\lambda \in A} (\lambda - \xi)^2 q(\lambda) = \sum_{\lambda \in A} \lambda^2 q(\lambda) - \xi^2. \tag{4.16}
\]

2. Show, \(E S_n = \xi \).

3. Let \(\delta_{ij} = 1 \) if \(i = j \) and \(\delta_{ij} = 0 \) if \(i \neq j \). Show
\[
E[(X_i - \xi)(X_j - \xi)] = \delta_{ij}\sigma^2.
\]

4. Using \(S_n - \xi \) may be expressed as, \(\frac{1}{n} \sum_{i=1}^{n} (X_i - \xi) \), show
\[
E(S_n - \xi)^2 = \frac{1}{n}\sigma^2. \tag{4.17}
\]

5. Conclude using Eq. (4.17) and Remark 4.18 that
\[
P(|S_n - \xi| \geq \varepsilon) \leq \frac{1}{n\varepsilon^2}\sigma^2. \tag{4.18}
\]

So for large \(n \), \(S_n \) is concentrated near \(\xi = EX_i \) with probability approaching 1 for \(n \) large. This is a version of the weak law of large numbers.

Exercise 4.4 (Bernoulli Random Variables). Let \(\Lambda = \{0, 1\} \), \(X : \Lambda \to \mathbb{R} \) be defined by \(X(0) = 0 \) and \(X(1) = 1, x \in [0,1] \), and define \(Q = x\delta_1 + (1-x)\delta_0 \), i.e. \(Q(\{0\}) = 1 - x \) and \(Q(\{1\}) = x \). Verify,
\[
\xi(x) := E_Q X = x \text{ and } \sigma^2(x) := E_Q (X - x)^2 = (1 - x) x \leq 1/4.
\]

Theorem 4.23 (Weierstrass Approximation Theorem via Bernstein’s Polynomials.). Suppose that \(f \in C([0,1], \mathbb{C}) \) and
\[
p_n(x) := \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.
\]

Then
\[
\lim_{n \to \infty} \sup_{x \in [0,1]} |f(x) - p_n(x)| = 0.
\]

Proof. Let \(x \in [0,1], \Lambda = \{0, 1\}, q(0) = 1 - x, q(1) = x, \Omega = \Lambda^n \), and
\[
P_x (\{\omega\}) = q(\omega_1) \cdots q(\omega_n) = x^{\sum_{i=1}^{n} \omega_i} (1-x)^{1-\sum_{i=1}^{n} \omega_i}.
\]

As above, let \(S_n = \frac{1}{n} (X_1 + \cdots + X_n) \), where \(X_i(\omega) = \omega_i \) and observe that
\[
P_x \left(S_n = \frac{k}{n} \right) = \binom{n}{k} x^k (1-x)^{n-k}.
\]

Therefore, writing \(E_x \) for \(E_{P_x} \), we have
\[
E_x \left[f(S_n) \right] = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{k}{n} \right)^k (1-x)^{n-k} = p_n(x).
\]

Hence we find
\[
|p_n(x) - f(x)| = |E_x f(S_n) - f(x)| = |E_x [f(S_n) - f(x)]| \leq E_x |f(S_n) - f(x)| = \mathbb{E}_x \left[f(S_n) - f(x) \right] : |S_n - x| \geq \varepsilon + \mathbb{E}_x \left[f(S_n) - f(x) \right] : |S_n - x| < \varepsilon \leq 2M \cdot P_x \left(|S_n - x| \geq \varepsilon \right) + \delta(\varepsilon)
\]
where
\[
M := \max_{y \in [0,1]} |f(y)| \text{ and } \delta(\varepsilon) := \sup \{|f(y) - f(x)| : x, y \in [0,1] \text{ and } \ |y - x| \leq \varepsilon \}
\]
is the modulus of continuity of \(f \). Now by the above exercises,
\[
P_x \left(|S_n - x| \geq \varepsilon \right) \leq \frac{1}{4n\varepsilon^2} \text{ (see Figure 4.1)}
\]
and hence we may conclude that
\[
\max_{x \in [0,1]} |p_n(x) - f(x)| \leq \frac{M}{2n\varepsilon^2} + \delta(\varepsilon)
\]
and therefore, that
\[
\limsup_{n \to \infty} \max_{x \in [0,1]} |p_n(x) - f(x)| \leq \delta(\varepsilon).
\]

This completes the proof, since by uniform continuity of \(f, \delta(\varepsilon) \downarrow 0 \) as \(\varepsilon \downarrow 0 \). \(\blacksquare \)
4.5 Constructing Finitely Additive Measures

Definition 4.24. A set $S \subset 2^X$ is said to be an \textit{semialgebra or elementary class} provided that

- $\emptyset \in S$
- S is closed under finite intersections
- if $E \in S$, then E^c is a finite disjoint union of sets from S. (In particular $X = \emptyset^c$ is a finite disjoint union of elements from S.)

Example 4.25. Let $X = \mathbb{R}$, then

$$S := \{(a, b] \cap \mathbb{R} : a, b \in \mathbb{R}\}$$

is a semi-field.

Exercise 4.5. Let $A \subset 2^X$ and $B \subset 2^Y$ be semi-fields. Show the collection

$$\mathcal{E} := \{A \times B : A \in A \text{ and } B \in B\}$$

is also a semi-field.

Proposition 4.26. Suppose $S \subset 2^X$ is a semi-field, then $\mathcal{A} = \mathcal{A}(S)$ consists of sets which may be written as finite disjoint unions of sets from S.

Proof. Let \mathcal{A} denote the collection of sets which may be written as finite disjoint unions of sets from S. Clearly $\mathcal{S} \subset \mathcal{A} \subset \mathcal{A}(S)$ so it suffices to show \mathcal{A} is an algebra since $\mathcal{A}(S)$ is the smallest algebra containing \mathcal{S}. By the properties of \mathcal{S}, we know that $\emptyset, X \in \mathcal{A}$. Now suppose that $A_i = \sum_{F \in \mathcal{A}_i} F \in \mathcal{A}$ where, for $i = 1, 2, \ldots, n$, A_i is a finite collection of disjoint sets from \mathcal{S}. Then

$$\bigcap_{i=1}^n A_i = \bigcap_{i=1}^n \left(\sum_{F \in \mathcal{A}_i} F \right) = \bigcup_{(F_1, \ldots, F_n) \in A_1 \times \cdots \times A_n} (F_1 \cap F_2 \cap \cdots \cap F_n)$$

and this is a disjoint (you check) union of elements from \mathcal{S}. Therefore \mathcal{A} is closed under finite intersections. Similarly, if $A = \sum_{F \in \mathcal{A}} F$ with \mathcal{A} being a finite collection of disjoint sets from \mathcal{S}, then $A^c = \bigcap_{F \in \mathcal{A}} F^c$. Since by assumption $F^c \in \mathcal{A}$ for $F \in \mathcal{A} \subset S$ and \mathcal{A} is closed under finite intersections, it follows that $A^c \in \mathcal{A}$.

Example 4.27. Let $X = \mathbb{R}$ and $\mathcal{S} := \{(a, b] \cap \mathbb{R} : a, b \in \mathbb{R}\}$ be as in Example 4.25. Then $\mathcal{A}(S)$ may be described as being those sets which are finite disjoint unions of sets from \mathcal{S}.

Proposition 4.28 (Construction of Finitely Additive Measures). Suppose $S \subset 2^X$ is a semi-algebra (see Definition 4.24) and $\mathcal{A} = \mathcal{A}(S)$ is the algebra generated by \mathcal{S}. Then every additive function $\mu : S \rightarrow [0, \infty]$ such that $\mu(\emptyset) = 0$ extends uniquely to an additive measure (which we still denote by μ) on \mathcal{A}.

Proof. Since (by Proposition 4.26) every element $A \in \mathcal{A}$ is of the form $A = \sum_i E_i$ for a finite collection of $E_i \in S$, it is clear that if μ extends to a measure then the extension is unique and must be given by

$$\mu(A) = \sum_i \mu(E_i). \quad (4.19)$$

To prove existence, the main point is to show that $\mu(A)$ in Eq. (4.19) is well defined; i.e. if we also have $A = \sum_j F_j$ with $F_j \in \mathcal{S}$, then we must show

$$\sum_i \mu(E_i) = \sum_j \mu(F_j). \quad (4.20)$$

But $E_i = \sum_j (E_i \cap F_j)$ and the additivity of μ on \mathcal{S} implies $\mu(E_i) = \sum_j \mu(E_i \cap F_j)$ and hence

$$\sum_i \mu(E_i) = \sum_j \sum_i \mu(E_i \cap F_j) = \sum_{i,j} \mu(E_i \cap F_j).$$

Similarly,
\[\sum_{j} \mu(F_j) = \sum_{i,j} \mu(E_i \cap F_j) \]

which combined with the previous equation shows that Eq. (4.20) holds. It is now easy to verify that \(\mu \) extended to \(A \) as in Eq. (4.19) is an additive measure on \(A \).

Proposition 4.29. Let \(X = \mathbb{R} \), \(S \) be a semi-algebra
\[
S = \{(a, b] \cap \mathbb{R} : -\infty \leq a \leq b \leq \infty \}, \tag{4.21}
\]
and \(A = A(S) \) be the algebra formed by taking finite disjoint unions of elements from \(S \), see Proposition 4.26. To each finitely additive probability measures \(\mu : A \to [0, \infty) \), there is a unique increasing function \(F : \mathbb{R} \to [0, 1] \) such that
\[
F(-\infty) = 0, \quad F(\infty) = 1 \quad \text{and} \quad \mu((a, b] \cap \mathbb{R}) = F(b) - F(a) \quad \forall \ a \leq b \ in \ \mathbb{R}. \tag{4.22}
\]
Conversely, given an increasing function \(F : \mathbb{R} \to [0, 1] \) such that \(F(-\infty) = 0 \), \(F(\infty) = 1 \) there is a unique finitely additive measure \(\mu = \mu_F \) on \(A \) such that

Conversely, suppose \(F : \mathbb{R} \to [0, 1] \) as in the statement of the theorem is given. Define \(\mu \) on \(S \) using the formula in Eq. (4.22). The argument will be completed by showing \(\mu \) is additive on \(S \) and hence, by Proposition 4.28, has a unique extension to a finitely additive measure on \(A \). Suppose that
\[
(a, b] = \sum_{i=1}^{n} (a_i, b_i].
\]
By reordering \((a_i, b_i] \) if necessary, we may assume that
\[
a = a_1 < b_1 = a_2 < b_2 = a_3 < \cdots < b_{n-1} = a_n < b_n = b.
\]
Therefore, by the telescoping series argument,
\[
\mu((a, b] \cap \mathbb{R}) = F(b) - F(a) = \sum_{i=1}^{n} |F(b_i) - F(a_i)| = \sum_{i=1}^{n} \mu((a_i, b_i] \cap \mathbb{R}).
\]

Proof. Given a finitely additive probability measure \(\mu \), let
\[
F(x) := \mu((-\infty, x] \cap \mathbb{R}) \text{ for all } x \in \mathbb{R}.
\]
Then \(F(\infty) = 1 \), \(F(-\infty) = 0 \) and for \(b > a \),
\[
F(b) - F(a) = \mu((-\infty, b] \cap \mathbb{R}) - \mu((-\infty, a]) = \mu((a, b] \cap \mathbb{R}).
\]
Conversely, suppose \(F : \mathbb{R} \to [0, 1] \) as in the statement of the theorem is given. Define \(\mu \) on \(S \) using the formula in Eq. (4.22). The argument will be completed by showing \(\mu \) is additive on \(S \) and hence, by Proposition 4.28, has a unique extension to a finitely additive measure on \(A \). Suppose that
\[
(a, b] = \sum_{i=1}^{n} (a_i, b_i].
\]
By reordering \((a_i, b_i] \) if necessary, we may assume that
\[
\begin{align*}
a &= a_1 < b_1 = a_2 < b_2 = a_3 < \cdots < b_{n-1} = a_n < b_n = b.
\end{align*}
\]
Therefore, by the telescoping series argument,
\[
\mu((a, b] \cap \mathbb{R}) = F(b) - F(a) = \sum_{i=1}^{n} |F(b_i) - F(a_i)| = \sum_{i=1}^{n} \mu((a_i, b_i] \cap \mathbb{R}).
\]
Countably Additive Measures

5.1 Distribution Function for Probability Measures on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$

Definition 5.1. Given a probability measure, P on $\mathcal{B}_\mathbb{R}$, the cumulative distribution function (CDF) of P is defined as the function, $F = F_P: \mathbb{R} \to [0, 1]$ given as

$$F(x) := P((−∞, x]).$$

Example 5.2. Suppose that

$$P = p\delta_{−1} + q\delta_{1} + r\delta_\pi$$

with $p, q, r > 0$ and $p + q + r = 1$. In this case,

$$F(x) = \begin{cases} 0 & \text{for } x < −1 \\ p & \text{for } −1 \leq x < 1 \\ p + q & \text{for } 1 \leq x < \pi \\ 1 & \text{for } \pi \leq x < \infty \end{cases}.$$

Lemma 5.3. If $F = F_P: \mathbb{R} \to [0, 1]$ is a distribution function for a probability measure, P, on $\mathcal{B}_\mathbb{R}$, then:

1. $F(−∞) := \lim_{x \to −∞} F(x) = 0$,
2. $F(∞) := \lim_{x \to ∞} F(x) = 1$,
3. F is non-decreasing, and
4. F is right continuous.

Theorem 5.4. To each function $F: \mathbb{R} \to [0, 1]$ satisfying properties 1. – 4. in Lemma 5.3 there exists a unique probability measure, P_F, on $\mathcal{B}_\mathbb{R}$ such that

$$P_F((a, b]) = F(b) − F(a) \text{ for all } −∞ < a \leq b < ∞.$$

Proof. The uniqueness assertion in the theorem is covered in Exercise 5.1 below. The existence portion of the Theorem follows from Proposition 5.7 and Theorem 5.19 below.

Example 5.5 (Uniform Distribution). The function,

$$F(x) := \begin{cases} 0 & \text{for } x \leq 0 \\ x & \text{for } 0 \leq x < 1 \\ 1 & \text{for } 1 \leq x < ∞ \end{cases}$$

is the distribution function for a measure, m on $\mathcal{B}_\mathbb{R}$ which is concentrated on $(0, 1]$. The measure, m is called the uniform distribution or Lebesgue measure on $(0, 1]$.

Recall from Definition 3.14 that $B \subset 2^X$ is a σ – algebra on X if B is an algebra which is closed under countable unions and intersections.

5.2 Construction of Premeasures

Proposition 5.6. Suppose that $S \subset 2^X$ is a semi-algebra, $A = A(S)$ and $\mu: A \to [0, ∞]$ is a finitely additive measure. Then μ is a premeasure on A iff μ is sub-additive on S.

Proof. Clearly if μ is a premeasure on A then μ is σ - additive and hence sub-additive on S. Because of Proposition 4.2, to prove the converse it suffices to show that the sub-additivity of μ on S implies the sub-additivity of μ on A.

So suppose $A = \sum_{n=1}^\infty A_n$ with $A \in A$ and each $A_n \in A$ which we express as $A = \sum_{j=1}^k E_j$ with $E_j \in S$ and $A_n = \sum_{i=1}^{N_n} E_{n,i}$ with $E_{n,i} \in S$. Then

$$E_j = A \cap E_j = \sum_{n=1}^\infty A_n \cap E_j = \sum_{n=1}^\infty \sum_{i=1}^{N_n} E_{n,i} \cap E_j$$

which is a countable union and hence by assumption,

$$\mu(E_j) \leq \sum_{n=1}^\infty \sum_{i=1}^{N_n} \mu(E_{n,i} \cap E_j).$$

Summing this equation on j and using the finite additivity of μ shows
5 Countably additive measures

\[\mu(A) = \sum_{j=1}^{k} \mu(E_j) \leq \sum_{j=1}^{k} \sum_{n=1}^{\infty} \sum_{i=1}^{N_n} \mu(E_{n,i} \cap E_j) \]

\[= \sum_{n=1}^{\infty} \sum_{j=1}^{k} \sum_{i=1}^{N_n} \mu(E_{n,i} \cap E_j) \]

\[= \sum_{n=1}^{\infty} \sum_{i=1}^{N_n} \mu(E_{n,i}) \]

which proves (using Proposition 4.2) the sub-additivity of \(\mu \) on \(\mathcal{A} \). \(\square \)

Now suppose that \(F : \mathbb{R} \to \mathbb{R} \) be an increasing function, \(F(\pm \infty) := \lim_{x \to \pm \infty} F(x) \) and \(\mu = \mu_F \) be the finitely additive measure on \((\mathbb{R}, \mathcal{A}) \) described in Proposition 4.29. If \(\mu \) is sub-additive on \(\mathcal{A} \), then by Proposition 5.7.

To do this choose numbers \(\tilde{a} > a, \tilde{b} > b \) such that \(b_n \downarrow \tilde{b} \) as \(n \to \infty \). Hence \(\mu \) is sub-additive on \(\mathcal{A} \) which are finite on bounded sets are in one to one correspondences with right continuous increasing functions which vanish at 0.

Proposition 5.7. To each right continuous increasing function \(F : \mathbb{R} \to \mathbb{R} \) there exists a unique premeasure \(\mu = \mu_F \) on \(\mathcal{A} \) such that

\[\mu_F((a, b], J_n = (a_n, b_n]) = F(b) - F(a) \forall - \infty < a < b < \infty. \]

Proof. As above, let \(F(\pm \infty) := \lim_{y \to \pm \infty} F(y) \) be as in Proposition 4.29. Because of Proposition 4.29, to finish the proof it suffices to show \(\mu \) is sub-additive on \(\mathcal{S} \).

First suppose that \(- \infty < a < b < \infty \), \(J = (a, b], J_n = (a_n, b_n] \) such that \(J = \bigcup_{n=1}^{\infty} J_n \). We wish to show

\[\mu(J) \leq \sum_{n=1}^{\infty} \mu(J_n). \]

To do this choose numbers \(\tilde{a} > a, \tilde{b} > b \) in which case \(I := (\tilde{a}, b) \subset J \),

\[\tilde{J}_n := (a_n, \tilde{b}_n] \supset \tilde{J}_n^\circ := (a_n, \tilde{b}_n] \supset J_n. \]

Since \(I \subset [\tilde{a}, b) \) is compact and \(I \subset J \subset \bigcup_{n=1}^{\infty} J_n^\circ \) there exists \(\tilde{N} < \infty \) such that

\[\mu(I) < \epsilon \]

for some \(\epsilon > 0 \). Hence by finite sub-additivity of \(\mu \),

\[F(b) - F(\tilde{a}) = \mu(I) \leq \sum_{n=1}^{\infty} \mu(J_n) \leq \sum_{n=1}^{\infty} \mu(J_n^\circ). \]

Using the right continuity of \(F \) and letting \(\tilde{a} \downarrow a \) in the above inequality,

\[\mu(J_n) = \mu((a, b], J_n) = F(b) - F(a) \leq \sum_{n=1}^{\infty} \mu(J_n^\circ) \]

\[= \sum_{n=1}^{\infty} \mu(J_n) + \sum_{n=1}^{\infty} \mu(J_n \setminus J_n^\circ). \]

Given \(\epsilon > 0 \), we may use the right continuity of \(F \) to choose \(\tilde{b}_n \) so that

\[\mu(J_n \setminus J_n^\circ) = F(\tilde{b}_n) - F(b_n) \leq \epsilon 2^{-n} \forall n \in \mathbb{N}. \]

Using this in Eq. (5.2) shows

\[\mu(J) = \mu((a, b], J) \leq \sum_{n=1}^{\infty} \mu(J_n) + \epsilon \]

which verifies Eq. (5.1) since \(\epsilon > 0 \) was arbitrary.

The hard work is now done but we still have to check the cases where \(a = - \infty \) or \(b = \infty \). For example, suppose that \(b = \infty \) so that

\[J = (a, \infty] = \sum_{n=1}^{\infty} J_n \]

with \(J_n = (a_n, b_n] \cap \mathbb{R} \). Then

\[I_M := (a, M] = J \cap I_M = \sum_{n=1}^{\infty} J_n \cap I_M \]

and so by what we have already proved,

\[F(M) - F(a) = \mu(I_M) \leq \sum_{n=1}^{\infty} \mu(J_n \cap I_M) \leq \sum_{n=1}^{\infty} \mu(J_n) \]

Now let \(M \to \infty \) in this last inequality to find that
\[\mu((a, \infty)) = F(\infty) - F(a) \leq \sum_{n=1}^{\infty} \mu(J_n). \]

The other cases where \(a = -\infty \) and \(b \in \mathbb{R} \) and \(a = -\infty \) and \(b = \infty \) are handled similarly.

Before continuing our development of the existence of measures, we will pause to show that measures are often uniquely determined by their values on a generating sub-algebra. This detour will also have the added benefit of motivating Carathéodory’s existence proof to be given below.

5.3 Regularity and Uniqueness Results

Definition 5.8. Given a collection of subsets, \(\mathcal{E} \), of \(X \), let \(\mathcal{E}_\sigma \) denote the collection of subsets of \(X \) which are finite or countable unions of sets from \(\mathcal{E} \). Similarly let \(\mathcal{E}_\delta \) denote the collection of subsets of \(X \) which are finite or countable intersections of sets from \(\mathcal{E} \). We also write \(\mathcal{E}_{\sigma\delta} = (\mathcal{E}_\sigma)_\delta \) and \(\mathcal{E}_{\delta\sigma} = (\mathcal{E}_\delta)_\sigma \), etc.

Lemma 5.9. Suppose that \(A \subset 2^X \) is an algebra. Then:

1. \(A_\sigma \) is closed under taking countable unions and finite intersections.
2. \(A_\delta \) is closed under taking countable intersections and finite unions.
3. \(\{ A^c : A \in A_\sigma \} = A_\delta \) and \(\{ A^c : A \in A_\delta \} = A_\sigma \).

Proof. By construction \(A_\sigma \) is closed under countable unions. Moreover if \(A = \bigcup_{i=1}^{\infty} A_i \) and \(B = \bigcup_{j=1}^{\infty} B_j \) with \(A_i, B_j \in A \), then

\[A \cap B = \bigcup_{i,j=1}^{\infty} A_i \cap B_j \in A_\sigma, \]

which shows that \(A_\sigma \) is also closed under finite intersections. Item 3. is straightforward and item 2. follows from items 1. and 3.

Theorem 5.10 (Finite Regularity Result). Suppose \(A \subset 2^X \) is an algebra, \(B = \sigma(A) \) and \(\mu : B \to [0, \infty) \) is a function, i.e. \(\mu(X) < \infty \). Then for any \(\varepsilon > 0 \) and \(B \in B \) there exists \(A \in A_\delta \) and \(C \in A_\sigma \) such that \(A \subset B \subset C \) and \(\mu(C \setminus A) < \varepsilon \).

Proof. Let \(B_0 \) denote the collection of \(B \in B \) such that for every \(\varepsilon > 0 \) there exists \(A \in A_\delta \) and \(C \in A_\sigma \) such that \(A \subset B \subset C \) and \(\mu(C \setminus A) < \varepsilon \). It is now clear that \(A \subset B_0 \) and that \(B_0 \) is closed under complementation. Now suppose that \(B_i \in B_0 \) for \(i = 1, 2, \ldots \) and \(\varepsilon > 0 \) is given. By assumption there exists \(A_i \in A_\delta \) and \(C_i \in A_\sigma \) such that \(A_i \subset B_i \subset C_i \) and \(\mu(C_i \setminus A_i) < 2^{-i} \varepsilon \).

Let \(A := \bigcup_{i=1}^{\infty} A_i, A^N := \bigcup_{i=1}^{N} A_i \in A_\delta, B := \bigcup_{i=1}^{\infty} B_i, \) and \(C := \bigcup_{i=1}^{\infty} C_i \in A_\sigma \). Then \(A^N \subset A \subset B \subset C \) and

\[C \setminus A = \bigcup_{i=1}^{\infty} C_i \setminus A = \bigcup_{i=1}^{\infty} C_i \setminus A_i \subset \bigcup_{i=1}^{\infty} [C_i \setminus A_i]. \]

Therefore,

\[\mu(C \setminus A) = \mu(\bigcup_{i=1}^{\infty} [C_i \setminus A_i]) \leq \sum_{i=1}^{\infty} \mu(C_i \setminus A_i) \leq \sum_{i=1}^{\infty} \mu(C_i \setminus A_i) < \varepsilon. \]

Since \(C \setminus A^N \downarrow C \setminus A \), it also follows that \(\mu(C \setminus A^N) < \varepsilon \) for sufficiently large \(N \) and this shows \(B = \bigcup_{i=1}^{\infty} B_i \in B_0 \). Hence \(B_0 \) is a sub-\(\sigma \)-algebra of \(B = \sigma(A) \) which contains \(A \) which shows \(B_0 = B \).

Many theorems in the sequel will require some control on the size of a measure \(\mu \). The relevant notion for our purposes (and most purposes) is that of a \(\sigma \)-finite measure defined next.

Definition 5.11. Suppose \(X \) is a set, \(\mathcal{E} \subset B \subset 2^X \) and \(\mu : B \to [0, \infty) \) is a function. The function \(\mu \) is \(\sigma \)-finite on \(\mathcal{E} \) if there exists \(E_n \in \mathcal{E} \) such that \(\mu(E_n) < \infty \) and \(X = \bigcup_{n=1}^{\infty} E_n \). If \(B \) is a \(\sigma \)-algebra and \(\mu \) is a measure on \(B \) which is \(\sigma \)-finite on \(B \) we will say \((X, B, \mu)\) is a \(\sigma \)-finite measure space.

The reader should check that if \(\mu \) is a finitely additive measure on an algebra, \(B \), then \(\mu \) is \(\sigma \)-finite on \(B \) iff there exists \(X_n \in B \) such that \(X_n \uparrow X \) and \(\mu(X_n) < \infty \).

Corollary 5.12 (\(\sigma \)-Finite Regularity Result). Theorem 5.10 continues to hold under the weaker assumption that \(\mu : B \to [0, \infty) \) is a measure which is \(\sigma \)-finite on \(A \).

Proof. Let \(X_n \in A \) such that \(\bigcup_{n=1}^{\infty} X_n = X \) and \(\mu(X_n) < \infty \) for all \(n \). Since \(A \in B \), \(\mu_n(A) := \mu(X_n \cap A) \) is a finite measure on \(A \) for each \(n \), by Theorem 5.10 for every \(B \in B \) there exists \(C_n \in A_\sigma \) such that \(B \subset C_n \) and \(\mu(X \cap (C_n \setminus B)) = \mu_n(C_n \setminus B) < 2^{-n} \varepsilon \). Now let \(C := \bigcup_{n=1}^{\infty} [X \cap C_n] \in A_\sigma \) and observe that \(B \subset C \) and

\[\mu(C \setminus B) = \mu(\bigcup_{n=1}^{\infty} ([X \cap C_n] \setminus B)) \leq \sum_{n=1}^{\infty} \mu([X \cap C_n] \setminus B) = \sum_{n=1}^{\infty} \mu(X \cap [C_n \setminus B]) < \varepsilon. \]

Applying this result to \(B^c \) shows there exists \(D \in A_\sigma \) such that \(B^c \subset D \) and

\[\mu(B^c \setminus D^c) = \mu(D \setminus B^c) < \varepsilon. \]

So if we let \(A := D^c \in A_\delta \), then \(A \subset B \subset C \) and

\[\mu(C \setminus A) = \mu([B \setminus A] \cup ([C \setminus B] \setminus A)) \leq \mu(B \setminus A) + \mu(C \setminus B) < 2\varepsilon \]

and the result is proved.
Exercise 5.1. Suppose \(A \subset 2^X \) is an algebra and \(\mu \) and \(\nu \) are two measures on \(B = \sigma(A) \).

a. Suppose that \(\mu \) and \(\nu \) are finite measures such that \(\mu = \nu \) on \(A \). Show \(\mu = \nu \).

b. Generalize the previous assertion to the case where you only assume that \(\mu \) and \(\nu \) are \(\sigma \)-finite on \(A \).

Corollary 5.13. Suppose \(A \subset 2^X \) is an algebra and \(\mu : B = \sigma(A) \to [0, \infty] \) is a measure which is \(\sigma \)-finite on \(A \). Then for all \(B \in B \), there exists \(A \in A_{\sigma} \) and \(C \in A_\sigma \) such that \(A \subset B \subset C \) and \(\mu(C \setminus A) = 0 \).

Proof. By Theorem 5.10, given \(B \in B \), we may choose \(A_n \in A_\sigma \) and \(C_n \in A_\sigma \) such that \(A_n \subset B \subset C_n \) and \(\mu(C_n \setminus B) \leq 1/n \) and \(\mu(B \setminus A_n) \leq 1/n \).

By replacing \(A_N \) by \(\bigcup_{n=1}^N A_n \) and \(C_N \) by \(\bigcap_{n=1}^N C_n \), we may assume that \(A_n \uparrow \) and \(C_n \downarrow \) as \(n \) increases. Let \(A = \bigcup A_n \in A_\sigma \) and \(C = \bigcap C_n \in A_\sigma \), then \(A \subset B \subset C \) and

\[
\mu(C \setminus A) = \mu(C \setminus B) + \mu(B \setminus A) \leq \mu(C_n \setminus B) + \mu(B \setminus A_n) \leq 2/n \to 0 \text{ as } n \to \infty.
\]

Exercise 5.2. Let \(B = B_\mathbb{R} = \sigma(\{\text{open subsets of } \mathbb{R}^n\}) \) be the Borel \(\sigma \)-algebra on \(\mathbb{R}^n \) and \(\mu \) be a probability measure on \(B \). Further, let \(B_0 \) denote those sets \(B \in B \) such that for every \(\varepsilon > 0 \) there exists \(F \subset B \subset V \) such that \(F \) is closed, \(V \) is open, and \(\mu(V \setminus F) < \varepsilon \). Show:

1. \(B_0 \) contains all closed subsets of \(B \). Hint: given a closed subset, \(F \subset \mathbb{R}^n \) and \(k \in \mathbb{N} \), let \(V_k := \bigcup_{x \in F} B(x, 1/k) \), where \(B(x, \delta) := \{y \in \mathbb{R}^n : |y - x| < \delta\} \).

Sho, \(V_k \uparrow F \) as \(k \to \infty \).

2. Show \(B_0 \) is a \(\sigma \)-algebra and use this along with the first part of this exercise to conclude \(B = B_0 \). Hint: follow closely the method used in the first step of the proof of Theorem 5.10.

3. Show for every \(\varepsilon > 0 \) and \(B \in B \), there exist a compact subset, \(K \subset \mathbb{R}^n \), such that \(K \subset B \) and \(\mu(B \setminus K) < \varepsilon \). Hint: take \(K := F \cap \{x \in \mathbb{R}^n : |x| \leq n\} \) for some sufficiently large \(n \).

5.4 Construction of Measures

Remark 5.14. Let us recall from Proposition 4.3 and Remark 4.4 that a \(\sigma \)-additive measure \(\mu : A \to [0, \infty] \) is a premeasure on \(A \) iff \(\mu(A_n) \uparrow \mu(A) \) for all \(\{A_n\}_{n=1}^{\infty} \subset A \) such that \(A_n \uparrow A \in A \). Furthermore if \(\mu(X) < \infty \), then \(\mu \) is a premeasure on \(A \) iff \(\mu(A_n) \downarrow 0 \) for all \(\{A_n\}_{n=1}^{\infty} \subset A \) such that \(A_n \downarrow \emptyset \).

Proposition 5.15. Let \(\mu \) be a premeasure on an algebra \(A \), then \(\mu \) has a unique extension (still called \(\mu \)) to a function on \(A_\sigma \) satisfying the following properties.

1. (Continuity) If \(A_n \in A \) and \(A_n \uparrow A \) in \(A_\sigma \), then \(\mu(A_n) \uparrow \mu(A) \) as \(n \to \infty \).

2. (Monotonicity) If \(A, B \in A_\sigma \) with \(A \subset B \) then \(\mu(A) \leq \mu(B) \).

3. (Strong Additivity) If \(A, B \in A_\sigma \), then

\[
\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).
\]

4. (Sub-Additivity on \(A_\sigma \)) The function \(\mu \) is sub-additive on \(A_\sigma \), i.e., if \(\{A_n\}_{n=1}^{\infty} \subset A_\sigma \), then

\[
\mu\left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \mu(A_n).
\]

5. (\(\sigma \)-Additivity on \(A_\sigma \)) The function \(\mu \) is countably additive on \(A_\sigma \).

Proof. Let \(A, B \) be sets in \(A_\sigma \) such that \(A \subset B \) and suppose \(\{A_n\}_{n=1}^{\infty} \) and \(\{B_n\}_{n=1}^{\infty} \) are sequences in \(A \) such that \(A_n \uparrow A \) and \(B_n \uparrow B \) as \(n \to \infty \). Since \(B_m \cap A_n \cap A_n \subset A_n \cap A_n \subset A_n \) as \(m \to \infty \), the continuity of \(\mu \) on \(A \) implies

\[
\mu(A_n) = \lim_{m \to \infty} \mu(B_m \cap A_n) \leq \lim_{m \to \infty} \mu(B_m).
\]

We may let \(n \to \infty \) in this inequality to find

\[
\lim_{n \to \infty} \mu(A_n) \leq \lim_{m \to \infty} \mu(B_m).
\]

Using this equation when \(B = A \), implies \(\lim_{n \to \infty} \mu(A_n) = \lim_{m \to \infty} \mu(B_m) \) whenever \(A_n \uparrow A \) and \(B_n \uparrow A \). Therefore it is unambiguous to define \(\mu(A) \) by:

\[
\mu(A) = \lim_{n \to \infty} \mu(A_n)
\]

for any sequence \(\{A_n\}_{n=1}^{\infty} \subset A \) such that \(A_n \uparrow A \). With this definition, the continuity of \(\mu \) is clear and the monotonicity of \(\mu \) follows from Eq. (5.5).

Suppose that \(A, B \in A_\sigma \) and \(\{A_n\}_{n=1}^{\infty} \) and \(\{B_n\}_{n=1}^{\infty} \) are sequences in \(A \) such that \(A_n \uparrow A \) and \(B_n \uparrow B \) as \(n \to \infty \). Then passing to the limit as \(n \to \infty \) in the identity,

\[
\mu(A_n \cup B_n) + \mu(A_n \cap B_n) = \mu(A_n) + \mu(B_n)
\]

proves Eq. (5.3). In particular, it follows that \(\mu \) is finitely additive on \(A_\sigma \).

Let \(\{A_n\}_{n=1}^{\infty} \) be any sequence in \(A_\sigma \) and choose \(\{A_{n,i}\}_{i=1}^{\infty} \subset A \) such that \(A_{n,i} \uparrow A_n \) as \(i \to \infty \). Then we have

\[
\mu\left(\bigcup_{i=1}^{N} A_{n,i} \right) \leq \sum_{i=1}^{N} \mu(A_{n,i}) \leq \sum_{n=1}^{\infty} \mu(A_n) \leq \sum_{n=1}^{\infty} \mu(A_n).
\]

Page: 32
job: prob
macro: svmonob.cls
date/time: 25-Oct-2006/14:51
Since $\mathcal{A} \supseteq \bigcup_{n=1}^{\infty} A_{n,N} \uparrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}_\sigma$, we may let $N \to \infty$ in Eq. (5.6) to conclude Eq. (5.4) holds.

If we further assume that $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}_\sigma$ is a disjoint sequence, by the finite additivity and monotonicity of μ on \mathcal{A}_σ, we have

$$\lim_{n \to \infty} \mu\left(\bigcup_{n=1}^{N} A_n\right) = \lim_{n \to \infty} \sum_{n=1}^{N} \mu(A_n) \leq \mu\left(\bigcup_{n=1}^{\infty} A_n\right).$$

The previous two inequalities show μ is σ–additive on \mathcal{A}_σ.

Suppose μ is a finite premeasure on an algebra, $\mathcal{A} \subset 2^X$, and $A \in \mathcal{A}_\delta \cap \mathcal{A}_\sigma$. Since $A, A^c \in \mathcal{A}_\sigma$ and $X = A \cup A^c$, it follows that $\mu(X) = \mu(A) + \mu(A^c)$. From this observation we may extend μ to a function on $\mathcal{A}_\delta \cup \mathcal{A}_\sigma$ by defining

$$\mu(A) := \mu(X) - \mu(A^c) \quad \text{for all } A \in \mathcal{A}_\delta.$$ (5.7)

Lemma 5.16. Suppose μ is a finite premeasure on an algebra, $\mathcal{A} \subset 2^X$, and μ has been extended to $\mathcal{A}_\delta \cup \mathcal{A}_\sigma$ as described in Proposition 5.15 and Eq. (5.7) above.

1. If $A \in \mathcal{A}_\delta$ and $A_n \in \mathcal{A}$ such that $A_n \downarrow A$, then $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.
2. μ is additive when restricted to \mathcal{A}_δ.
3. If $A \in \mathcal{A}_\delta$ and $C \in \mathcal{A}_\sigma$ such that $A \subset C$, then $\mu(C \setminus A) = \mu(C) - \mu(A)$.

Proof.

1. Since $A_n \uparrow A^c \in \mathcal{A}_\sigma$, by the definition of $\mu(A)$ and Proposition 5.15 it follows that

$$\mu(A) = \mu(X) - \mu(A^c) = \mu(X) - \lim_{n \to \infty} \mu(A_n^c)$$

$$= \lim_{n \to \infty} [\mu(X) - \mu(A_n)] = \lim_{n \to \infty} \mu(A_n).$$

2. Suppose $A, B \in \mathcal{A}_\delta$ are disjoint sets and $A_n, B_n \in \mathcal{A}$ such that $A_n \downarrow A$ and $B_n \downarrow B$, then $A_n \cup B_n \downarrow A \cup B$ and therefore,

$$\mu(A \cup B) = \lim_{n \to \infty} \mu(A_n \cup B_n) = \lim_{n \to \infty} [\mu(A_n) + \mu(B_n) - \mu(A_n \cap B_n)]$$

$$=\mu(A) + \mu(B)$$

wherein the last equality we have used Proposition 4.3.

3. By assumption, $X = A^c \cup C$. So applying the strong additivity of μ on \mathcal{A}_σ in Eq. (5.3) with $A \to A^c \in \mathcal{A}_\sigma$ and $B \to C \in \mathcal{A}_\sigma$ shows

$$\mu(X) + \mu(C \setminus A) \leq \mu(A^c \cup C) + \mu(A^c \cap C)$$

$$= \mu(A^c) + \mu(C) = \mu(X) - \mu(A) + \mu(C).$$

Definition 5.17 (Measurable Sets). Suppose μ is a finite premeasure on an algebra $\mathcal{A} \subset 2^X$. We say that $B \subset X$ is **measurable** if for all $\varepsilon > 0$ there exists $A \in \mathcal{A}_\delta$ and $C \in \mathcal{A}_\sigma$ such that $A \subset B \subset C$ and $\mu(C \setminus A) < \varepsilon$. We will denote the collection of measurable subsets of X by $\mathcal{B} = \mathcal{B}(\mu)$. We also define $\bar{\mu} : \mathcal{B} \to [0, \mu(X)]$ by

$$\bar{\mu}(B) = \inf \{\mu(C) : B \subset C \in \mathcal{A}_\sigma\}.$$ (5.8)

Remark 5.18. If $B \in \mathcal{B}$, $\varepsilon > 0$, $A \in \mathcal{A}_\delta$ and $C \in \mathcal{A}_\sigma$ are such that $A \subset B \subset C$ and $\mu(C \setminus A) < \varepsilon$, then $\mu(A) \leq \bar{\mu}(B) \leq \mu(C)$ and in particular,

$$0 \leq \bar{\mu}(B) - \mu(A) < \varepsilon, \quad \text{and} \quad 0 \leq \mu(C) - \bar{\mu}(B) < \varepsilon.$$ (5.9)

Indeed, if $C' \in \mathcal{A}_\sigma$ with $B \subset C'$, then $A \subset C'$ and so by Lemma 5.16

$$\mu(A) \leq \mu(C' \setminus A) + \mu(A) = \mu(C')$$

from which it follows that $\mu(A) \leq \bar{\mu}(B)$. The fact that $\bar{\mu}(B) \leq \mu(C)$ follows directly from Eq. (5.8).

Theorem 5.19 (Finite Premeasure Extension Theorem). Suppose μ is a finite premeasure on an algebra $\mathcal{A} \subset 2^X$. Then \mathcal{B} is a σ–algebra on X which contains \mathcal{A} and $\bar{\mu}$ is a σ–additive measure on \mathcal{B}. Moreover, $\bar{\mu}$ is the unique measure on \mathcal{B} such that $\bar{\mu}|_{\mathcal{A}} = \mu$.

Proof. It is clear that $\mathcal{A} \subset \mathcal{B}$ and that \mathcal{B} is closed under complementation. Now suppose that $B_i \in \mathcal{B}$ for $i = 1, 2$ and $\varepsilon > 0$ is given. We may then choose $A_i \subset B_i \subset C_i$ such that $A_i \in \mathcal{A}_\delta$, $C_i \in \mathcal{A}_\sigma$, and $\mu(C_i \setminus A_i) < \varepsilon$ for $i = 1, 2$. Then with $A = A_1 \cup A_2$, $B = B_1 \cup B_2$ and $C = C_1 \cup C_2$, we have $A_\delta \ni A \subset B \subset C \in \mathcal{A}_\sigma$. Since

$$C \setminus A = (C_1 \setminus A) \cup (C_2 \setminus A) \subset (C_1 \setminus A_1) \cup (C_2 \setminus A_2),$$

it follows from the sub-additivity of μ that with

$$\mu(C \setminus A) \leq \mu(C_1 \setminus A_1) + \mu(C_2 \setminus A_2) < 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we have shown that $B \in \mathcal{B}$. Hence we now know that \mathcal{B} is an algebra.

Because \mathcal{B} is an algebra, to verify that \mathcal{B} is a σ–algebra it suffices to show that $B = \sum_{i=1}^{\infty} B_n \in \mathcal{B}$ whenever $\{B_n\}_{n=1}^{\infty}$ is a disjoint sequence in \mathcal{B}. To prove $B \in \mathcal{B}$, let $\varepsilon > 0$ be given and choose $A_i \subset B_i \subset C_i$ such that $A_i \in \mathcal{A}_\delta$, $C_i \in \mathcal{A}_\sigma$, and $\mu(C_i \setminus A_i) < \varepsilon 2^{-i}$ for all i. Since the $\{A_i\}_{i=1}^{\infty}$ are pairwise disjoint we may use Lemma 5.16 to show,
Therefore, using the sub-additivity of \(\mu \) on \(\mathcal{A}_\sigma \) and the estimate (5.10),

\[
\mu(C \setminus A^n) \leq \sum_{i=1}^{n} \mu(C_i \setminus A_i) + \sum_{i=n+1}^{\infty} \mu(C_i) \\
\leq \varepsilon + \sum_{i=n+1}^{\infty} \mu(C_i) \to \varepsilon \text{ as } n \to \infty.
\]

Since \(\varepsilon > 0 \) is arbitrary, it follows that \(B \in \mathcal{B} \). Moreover by repeated use of Remark 5.18, we find

\[
|\overline{\mu}(B) - \mu(A^n)| < \varepsilon + \sum_{i=n+1}^{\infty} \mu(C_i) \quad \text{and} \\
\left| \sum_{i=1}^{n} \overline{\mu}(B_i) - \mu(A^n) \right| = \sum_{i=1}^{n} |\overline{\mu}(B_i) - \mu(A_i)| \leq \sum_{i=1}^{n} |\overline{\mu}(B_i) - \mu(A_i)| \leq \varepsilon \sum_{i=1}^{n} 2^{-i} < \varepsilon.
\]

Combining these estimates shows

\[
|\overline{\mu}(B) - \sum_{i=1}^{n} \overline{\mu}(B_i)| < 2\varepsilon + \sum_{i=n+1}^{\infty} \mu(C_i)
\]

which upon letting \(n \to \infty \) gives,

\[
|\overline{\mu}(B) - \sum_{i=1}^{\infty} \overline{\mu}(B_i)| \leq 2\varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, we have shown \(\overline{\mu}(B) = \sum_{i=1}^{\infty} \overline{\mu}(B_i) \). This completes the proof that \(\mathcal{B} \) is a \(\sigma \)-algebra and that \(\overline{\mu} \) is a measure on \(\mathcal{B} \).

Theorem 5.20. Suppose that \(\mu \) is a \(\sigma \)-finite premeasure on an algebra \(\mathcal{A} \). Then

\[
\overline{\mu}(B) := \inf \{ \mu(C) : B \subset C \in \mathcal{A}_\sigma \} \quad \forall B \in \sigma(\mathcal{A})
\]

defines a measure on \(\sigma(\mathcal{A}) \) and this measure is the unique extension of \(\mu \) on \(\mathcal{A} \) to a measure on \(\sigma(\mathcal{A}) \).

Proof. Let \(\{X_n\}_{n=1}^{\infty} \subset \mathcal{A} \) be chosen so that \(\mu(X_n) < \infty \) for all \(n \) and \(X_n \uparrow X \) as \(n \to \infty \) and let

\[
\mu_n(A) := \mu_n(A \cap X_n) \text{ for all } A \in \mathcal{A}.
\]

Each \(\mu_n \) is a premeasure (as is easily verified) on \(\mathcal{A} \) and hence by Theorem 5.19 each \(\mu_n \) has an extension, \(\overline{\mu}_n \), to a measure on \(\sigma(\mathcal{A}) \). Since the measure \(\mu_n \) are increasing, \(\overline{\mu} := \lim_{n \to \infty} \mu_n \) is a measure which extends \(\mu \).

The proof will be completed by verifying that Eq. (5.11) holds. Let \(B \in \sigma(\mathcal{A}) \), \(B_m = X_m \cap B \) and \(\varepsilon > 0 \) be given. By Theorem 5.19 there exists \(C_m \in \mathcal{A}_\sigma \) such that \(B_m \subset C_m \subset X_m \) and \(\overline{\mu}(C_m \setminus B_m) = \overline{\mu}_m(C_m \setminus B_m) < \varepsilon 2^{-n} \). Then \(C := \bigcup_{m=1}^{\infty} C_m \in \mathcal{A}_\sigma \) and

\[
\overline{\mu}(C \setminus B) \leq \overline{\mu}\left(\bigcup_{m=1}^{\infty} (C_m \setminus B) \right) \leq \sum_{m=1}^{\infty} \overline{\mu}(C_m \setminus B) \leq \sum_{m=1}^{\infty} \overline{\mu}(C_m \setminus B_m) < \varepsilon.
\]

Thus

\[
\overline{\mu}(B) \leq \overline{\mu}(C) = \overline{\mu}(B) + \overline{\mu}(C \setminus B) \leq \overline{\mu}(B) + \varepsilon \\
\]

which, since \(\varepsilon > 0 \) is arbitrary, shows \(\overline{\mu} \) satisfies Eq. (5.11). The uniqueness of the extension \(\overline{\mu} \) is proved in Exercise 5.1. ■

5.5 Completions of Measure Spaces

Definition 5.21. A set \(E \subset X \) is a **null set** if \(E \in \mathcal{B} \) and \(\mu(E) = 0 \). If \(P \) is some “property” which is either true or false for each \(x \in X \), we will use the terminology \(P \text{ a.e.} \) (to be read \(P \) almost everywhere) to mean

\[
E := \{ x \in X : P \text{ is false for } x \}
\]

is a null set. For example if \(f \) and \(g \) are two measurable functions on \((X, \mathcal{B}, \mu), f = g \text{ a.e. means that } \mu(f \neq g) = 0 \).

Definition 5.22. A measure space \((X, \mathcal{B}, \mu)\) is **complete** if every subset of a null set is in \(\mathcal{B} \), i.e. for all \(F \subset X \) such that \(F \subset E \in \mathcal{B} \) with \(\mu(E) = 0 \) implies that \(F \in \mathcal{B} \).
Proposition 5.23 (Completion of a Measure). Let (X, \mathcal{B}, μ) be a measure space. Set

$$\mathcal{N} = \mathcal{N}^\mu := \{ N \subset X : \exists F \in \mathcal{B} \text{ such that } N \subset F \text{ and } \mu(F) = 0 \},$$

$$\mathcal{B} = \bar{\mathcal{B}}^\mu := \{ A \cup N : A \in \mathcal{B} \text{ and } N \in \mathcal{N} \}$$

and

$$\bar{\mu}(A \cup N) := \mu(A) \text{ for } A \in \mathcal{B} \text{ and } N \in \mathcal{N},$$

see Fig. 5.1. Then $\bar{\mathcal{B}}$ is a σ– algebra, $\bar{\mu}$ is a well defined measure on $\bar{\mathcal{B}}$, $\bar{\mu}$ is the unique measure on $\bar{\mathcal{B}}$ which extends μ on \mathcal{B}, and $(X, \bar{\mathcal{B}}, \bar{\mu})$ is complete measure space. The σ-algebra, $\bar{\mathcal{B}}$, is called the completion of \mathcal{B} relative to μ and $\bar{\mu}$, is called the completion of μ.

Proof. Clearly $X, \emptyset \in \bar{\mathcal{B}}$. Let $A \in \mathcal{B}$ and $N \in \mathcal{N}$ and choose $F \in \mathcal{B}$ such that $N \subset F$ and $\mu(F) = 0$. Since $\mathcal{N}^c = (F \setminus N) \cup F^c$,

$$(A \cup N)^c = A^c \cap N^c = A^c \cap (F \setminus N \cup F^c) = [A^c \cap (F \setminus N)] \cup [A^c \cap F^c]$$

where $[A^c \cap (F \setminus N)] \in \mathcal{N}$ and $[A^c \cap F^c] \in \mathcal{B}$. Thus $\bar{\mathcal{B}}$ is closed under complements. If $A_i \in \mathcal{B}$ and $N_i \subset F_i \in \mathcal{B}$ such that $\mu(F_i) = 0$ then $\cup(A_i \cup N_i) = (\cup A_i) \cup (\cup N_i) \in \bar{\mathcal{B}}$ since $\cup A_i \in \mathcal{B}$ and $\cup N_i \subset \cup F_i$ and $\mu(\cup F_i) \leq \sum \mu(F_i) = 0$. Therefore, $\bar{\mathcal{B}}$ is a σ– algebra. Suppose $A \cup N_1 = B \cup N_2$ with $A, B \in \mathcal{B}$ and $N_1, N_2 \in \mathcal{N}$. Then $A \subset A \cup N_1 \subset A \cup N_1 \cup F_2 = B \cup F_2$ which shows that

$$\mu(A) \leq \mu(B) + \mu(F_2) = \mu(B).$$

Similarly, we show that $\mu(B) \leq \mu(A)$ so that $\mu(A) = \mu(B)$ and hence $\bar{\mu}(A \cup N) := \mu(A)$ is well defined. It is left as an exercise to show $\bar{\mu}$ is a measure, i.e. that it is countable additive.

5.6 A Baby Version of Kolmogorov’s Extension Theorem

For this section, let A be a finite set, $\Omega := A^\infty := A^\mathbb{N}$, and let \mathcal{A} denote the collection of cylinder subsets of Ω, where $A \subset \Omega$ is a cylinder set iff there exists $n \in \mathbb{N}$ and $B \subset A^n$ such that $A = B \times A^n := \{ \omega \in \Omega : (\omega_1, \ldots, \omega_n) \in B \}$.

Observe that we may also write A as $A = B' \times A^n$ where $B' = B \times A_{n+k} \subset A^{n+k}$ for any $k \geq 0$.

Exercise 5.3. Show \mathcal{A} is an algebra.

Lemma 5.24. Suppose $\{ A_n \}_{n=1}^\infty \subset \mathcal{A}$ is a decreasing sequence of non-empty cylinder sets, then $\cap_{n=1}^\infty A_n \neq \emptyset$.

Proof. Since $A_n \in \mathcal{A}$, we may find $N_n \in \mathcal{N}$ and $B_n \subset A^{N_n}$ such that $A_n = B_n \times A^{N_n}$. Using the observation just prior to this Lemma, we may assume that $\{ N_n \}_{n=1}^\infty$ is a strictly increasing sequence.

By assumption, there exists $\omega(n) = (\omega_1(n), \omega_2(n), \ldots) \in \Omega$ such that $\omega(n) \in A_n$ for all n. Moreover, since $\omega(n) \in A_n \subset A_k$ for all $k \leq n$, it follows that

$$\omega(n), \omega_2(n), \ldots, \omega_{N_k}(n) \in B_k \text{ for all } k \leq n. \quad (5.12)$$

Since A is a finite set, we may find a $\lambda_1 \in A$ and an infinite subset, $I_1 \subset \mathbb{N}$ such that $\omega_1(n) = \lambda_1$ for all $n \in I_1$. Similarly, there exists $\lambda_2 \in A$ and an infinite set, $I_2 \subset I_1$, such that $\omega_2(n) = \lambda_2$ for all $n \in I_2$. Continuing this procedure inductively, there exists (for all $j \in \mathbb{N}$) infinite subsets, $I_j \subset \mathbb{N}$ and points $\lambda_j \in A$ such that $I_1 \supset I_2 \supset I_3 \supset \ldots$ and $\omega_j(n) = \lambda_j$ for all $n \in I_j$.

We are now going to complete the proof by showing that $\lambda := (\lambda_1, \lambda_2, \ldots)$ is in $\cap_{n=1}^\infty A_n$. By the construction above, for all $n \in \mathcal{N}$ we have

$$(\omega_1(n), \ldots, \omega_{N_k}(n)) = (\lambda_1, \ldots, \lambda_k) \text{ for all } n \in I_N.$$

Taking $N = N_k$ and $n \in I_N$ with $n \geq k$, we learn from Eq. (5.12) that

$$(\lambda_1, \ldots, \lambda_{N_k}) = (\omega_1(n), \ldots, \omega_{N_k}(n)) \in B_k.$$ But this is equivalent to showing $\lambda \in A_k$. Since $k \in \mathbb{N}$ was arbitrary it follows that $\lambda \in \cap_{n=1}^\infty A_n$.

Theorem 5.25 (Kolmogorov’s Extension Theorem I). Continuing the notation above, every finitely additive probability measure, $P : \mathcal{A} \to [0,1]$, has a unique extension to a probability measure on $\sigma(\mathcal{A})$.

Proof. From Theorem 5.19, it suffices to show \(\lim_{n \to \infty} P(A_n) = 0 \) whenever \(\{A_n\}_{n=1}^{\infty} \subset \mathcal{A} \) with \(A_n \downarrow \emptyset \). However, by Lemma 5.24, if \(A_n \in \mathcal{A} \) and \(A_n \downarrow \emptyset \), we must have that \(A_n = \emptyset \) for a.a. \(n \) and in particular \(P(A_n) = 0 \) for a.a. \(n \). This certainly implies \(\lim_{n \to \infty} P(A_n) = 0 \). \(\blacksquare \)

Given a probability measure, \(P : \sigma(\mathcal{A}) \to [0,1] \) and \(n \in \mathbb{N} \) and \((\lambda_1, \ldots, \lambda_n) \in \Lambda^n \), let
\[
 p_n(\lambda_1, \ldots, \lambda_n) := P(\{\omega \in \Omega : \omega_1 = \lambda_1, \ldots, \omega_n = \lambda_n\}). \quad (5.13)
\]

Exercise 5.4 (Consistency Conditions). If \(p_n \) is defined as above, show:

1. \(\sum_{\lambda \in \Lambda} p_1(\lambda) = 1 \) and
2. for all \(n \in \mathbb{N} \) and \((\lambda_1, \ldots, \lambda_n) \in \Lambda^n \),
\[
 p_n(\lambda_1, \ldots, \lambda_n) = \sum_{\lambda \in \Lambda} p_{n+1}(\lambda_1, \ldots, \lambda_n, \lambda).
\]

Exercise 5.5 (Converse to 5.4). Suppose for each \(n \in \mathbb{N} \) we are given functions, \(p_n : \Lambda^n \to [0,1] \) such that the consistency conditions in Exercise 5.4 hold. Then there exists a unique probability measure, \(P \) on \(\sigma(\mathcal{A}) \) such that Eq. (5.13) holds for all \(n \in \mathbb{N} \) and \((\lambda_1, \ldots, \lambda_n) \in \Lambda^n \).

Example 5.26 (Existence of iid simple R.V.s). Suppose now that \(q : \Lambda \to [0,1] \) is a function such that \(\sum_{\lambda \in \Lambda} q(\lambda) = 1 \). Then there exists a unique probability measure \(P \) on \(\sigma(\mathcal{A}) \) such that, for all \(n \in \mathbb{N} \) and \((\lambda_1, \ldots, \lambda_n) \in \Lambda^n \), we have
\[
 P(\{\omega \in \Omega : \omega_1 = \lambda_1, \ldots, \omega_n = \lambda_n\}) = q(\lambda_1) \cdots q(\lambda_n).
\]

This is a special case of Exercise 5.5 with \(p_n(\lambda_1, \ldots, \lambda_n) := q(\lambda_1) \cdots q(\lambda_n) \).
Random Variables

6.1 Measurable Functions

Definition 6.1. A measurable space is a pair \((X, \mathcal{M})\), where \(X\) is a set and \(\mathcal{M}\) is a \(\sigma\)-algebra on \(X\).

To motivate the notion of a measurable function, suppose \((X, \mathcal{M}, \mu)\) is a measure space and \(f : X \to \mathbb{R}_+\) is a function. Roughly speaking, we are going to define \(\int f \, d\mu\) as a certain limit of sums of the form,

\[
\sum_{0 < a_1 < a_2 < a_3 < \ldots} a_i \mu(f^{-1}(a_i, a_{i+1})).
\]

For this to make sense we will need to require \(f^{-1}((a, b]) \in \mathcal{M}\) for all \(a < b\). Because of Corollary 6.7 below, this last condition is equivalent to the condition \(f^{-1}(\mathcal{B}_\mathbb{R}) \subset \mathcal{M}\).

Definition 6.2. Let \((X, \mathcal{M})\) and \((Y, \mathcal{F})\) be measurable spaces. A function \(f : X \to Y\) is measurable of more precisely, \(\mathcal{M}/\mathcal{F}\) - measurable or \((\mathcal{M}, \mathcal{F})\) - measurable, if \(f^{-1}(\mathcal{F}) \subset \mathcal{M}\), i.e. if \(f^{-1}(A) \in \mathcal{M}\) for all \(A \in \mathcal{F}\).

Remark 6.3. Let \(f : X \to Y\) be a function. Given a \(\sigma\)-algebra \(\mathcal{F} \subset 2^Y\), the \(\sigma\)-algebra \(\mathcal{M} := f^{-1}(\mathcal{F})\) is the smallest \(\sigma\)-algebra on \(X\) such that \(f\) is \((\mathcal{M}, \mathcal{F})\) - measurable. Similarly, if \(\mathcal{M}\) is a \(\sigma\)-algebra on \(X\) then

\[
\mathcal{F} = f_*\mathcal{M} = \{A \in 2^X | f^{-1}(A) \in \mathcal{M}\}
\]

is the largest \(\sigma\)-algebra on \(Y\) such that \(f\) is \((\mathcal{M}, \mathcal{F})\) - measurable.

Example 6.4 (Characteristic Functions). Let \((X, \mathcal{M})\) be a measurable space and \(A \subset X\). Then \(1_A\) is \((\mathcal{M}, \mathcal{B}_\mathbb{R})\) - measurable iff \(A \in \mathcal{M}\). Indeed, \(1_A^{-1}(W)\) is either \(\emptyset\), \(X\), \(A\) or \(A^c\) for any \(W \subset \mathbb{R}\) with \(1_A^{-1}\{\{1\}\} = A\).

Example 6.5. Suppose \(f : X \to Y\) with \(Y\) being a finite set and \(\mathcal{F} = 2^Y\). Then \(f\) is measurable iff \(f^{-1}\{y\} \in \mathcal{M}\) for all \(y \in Y\).

Proposition 6.6. Suppose that \((X, \mathcal{M})\) and \((Y, \mathcal{F})\) are measurable spaces and further assume \(\mathcal{E} \subset \mathcal{F}\) generates \(\mathcal{F}\), i.e. \(\mathcal{F} = \sigma(\mathcal{E})\). Then a map, \(f : X \to Y\) is measurable iff \(f^{-1}(\mathcal{E}) \subset \mathcal{M}\).

Proof. If \(f\) is \(\mathcal{M}/\mathcal{F}\) measurable, then \(f^{-1}(\mathcal{E}) \subset f^{-1}(\mathcal{F}) \subset \mathcal{M}\). Conversely if \(f^{-1}(\mathcal{E}) \subset \mathcal{M}\), then, using Lemma 3.26

\[
f^{-1}(\mathcal{F}) = f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E})) \subset \mathcal{M}.
\]

\[\square\]

Corollary 6.7. Suppose that \((X, \mathcal{M})\) is a measurable space. Then the following conditions on a function \(f : X \to \mathbb{R}\) are equivalent:

1. \(f\) is \((\mathcal{M}, \mathcal{B}_\mathbb{R})\) - measurable,
2. \(f^{-1}((a, \infty)) \in \mathcal{M}\) for all \(a \in \mathbb{R}\),
3. \(f^{-1}((a, \infty)) \in \mathcal{M}\) for all \(a \in \mathbb{Q}\),
4. \(f^{-1}((\infty, a]) \in \mathcal{M}\) for all \(a \in \mathbb{R}\).

Exercise 6.2. If \(\mathcal{M}\) is the \(\sigma\)-algebra generated by \(\mathcal{E} \subset 2^X\), then \(\mathcal{M}\) is the union of the \(\sigma\)-algebras generated by countable subsets \(\mathcal{F} \subset \mathcal{E}\).

Exercise 6.3. Let \((X, \mathcal{M})\) be a measure space and \(f_n : X \to \mathbb{R}\) be a sequence of measurable functions on \(X\). Show that \(\{x : \lim_{n \to \infty} f_n(x) \text{ exists in } \mathbb{R}\} \in \mathcal{M}\).

Exercise 6.4. Show that every monotone function \(f : \mathbb{R} \to \mathbb{R}\) is \((\mathcal{B}_\mathbb{R}, \mathcal{B}_\mathbb{R})\) - measurable.

Definition 6.8. Given measurable spaces \((X, \mathcal{M})\) and \((Y, \mathcal{F})\) and a subset \(A \subset X\). We say a function \(f : A \to Y\) is measurable iff \(f\) is \(\mathcal{M}_A/\mathcal{F}\) - measurable.

Proposition 6.9 (Localizing Measurability). Let \((X, \mathcal{M})\) and \((Y, \mathcal{F})\) be measurable spaces and \(f : X \to Y\) be a function.

1. If \(f\) is measurable and \(A \subset X\) then \(f|_A : A \to Y\) is measurable.
2. Suppose there exist \(A_n \in \mathcal{M}\) such that \(X = \bigcup_{n=1}^\infty A_n\) and \(f|_{A_n}\) is \(\mathcal{M}_{A_n}\) measurable for all \(n\), then \(f\) is \(\mathcal{M}\) - measurable.

Proof. 1. If \(f : X \to Y\) is measurable, \(f^{-1}(B) \in \mathcal{M}\) for all \(B \in \mathcal{F}\) and therefore

\[
f|_A^{-1}(B) = A \cap f^{-1}(B) \in \mathcal{M}_A \text{ for all } B \in \mathcal{F}.
\]
2. If $B \in \mathcal{F}$, then
\[f^{-1}(B) = \bigcup_{n=1}^{\infty} (f^{-1}(B) \cap A_n) = \bigcup_{n=1}^{\infty} f^{-1}(B) \cap A_n. \]
Since each $A_n \in \mathcal{M}$, $\mathcal{M}_{\infty} \subset \mathcal{M}$ and so the previous displayed equation shows $f^{-1}(B) \in \mathcal{M}$.

Proposition 6.10. Let (X, \mathcal{M}, μ) be a measure space, (Y, \mathcal{F}) be a measurable space and $f : X \to Y$ be a measurable map. Define a function $\nu : \mathcal{F} \to [0, \infty]$ by $\nu(A) := \mu(f^{-1}(A))$ for all $A \in \mathcal{F}$. Then ν is a measure on (Y, \mathcal{F}). (In the future we will denote ν by $f_* \mu$ or $\mu \circ f^{-1}$ and call $f_* \mu$ the \textit{push-forward} of μ by f or the \textit{law of f under μ}.

Theorem 6.11. Given a distribution function, $F : \mathbb{R} \to [0, 1]$ let $G : (0, 1) \to \mathbb{R}$ be defined (see Figure 6.1) by,
\[G(y) := \inf \{ x : F(x) \geq y \}. \]
Then $G : (0, 1) \to \mathbb{R}$ is Borel measurable and $G_* \mu = \mu_F$ where μ_F is the unique measure on $(\mathbb{R}, \mathcal{B}_\mathbb{R})$ such that $\mu_F((a, b]) = F(b) - F(a)$ for all $-\infty < a < b < \infty$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig6_1.png}
\caption{A pictorial definition of G.}
\end{figure}

Proof. Since $G : (0, 1) \to \mathbb{R}$ is a non-decreasing function, G is measurable. We also claim that, for all $x_0 \in \mathbb{R}$, that
\[G^{-1}((0, x_0]) = \{ y : G(y) \leq x_0 \} = (0, F(x_0]) \cap \mathbb{R}, \]
see Figure 6.2.

To give a formal proof of Eq. (6.1), $G(y) = \inf \{ x : F(x) \geq y \} \leq x_0$, there exists $x_n \geq x_0$ with $x_n \downarrow x_0$ such that $F(x_n) \geq y$. By the right continuity of F, it follows that $F(x_0) \geq y$. Thus we have shown
\[\{ G \leq x_0 \} \subset (0, F(x_0)] \cap (0, 1). \]

For the converse, if $y \leq F(x_0)$ then $G(y) = \inf \{ x : F(x) \geq y \} \leq x_0$, i.e. $y \in \{ G \leq x_0 \}$. Indeed, $y \in G^{-1}((\infty, x_0])$ iff $G(y) \leq x_0$. Observe that
\[G(F(x_0)) = \inf \{ x : F(x) \geq F(x_0) \} \leq x_0 \]
and hence $G(y) \leq x_0$ whenever $y \leq F(x_0)$. This shows that
\[(0, F(x_0)] \cap (0, 1) \subset G^{-1}((0, x_0]). \]

As a consequence we have $G_* \mu = \mu_F$. Indeed,
\[(G_* \mu)((-\infty, x]) = m(G^{-1}((-\infty, x])) = m(\{ y \in (0, 1) : G(y) \leq x \}) \]
\[= m((0, F(x)] \cap (0, 1)) = F(x). \]
See section 2.5.2 on p. 61 of Resnick for more details.

Lemma 6.12 (Composing Measurable Functions). Suppose that (X, \mathcal{M}), (Y, \mathcal{F}) and (Z, \mathcal{G}) are measurable spaces. If $f : (X, \mathcal{M}) \to (Y, \mathcal{F})$ and $g : (Y, \mathcal{F}) \to (Z, \mathcal{G})$ are measurable functions then $g \circ f : (X, \mathcal{M}) \to (Z, \mathcal{G})$ is measurable as well.

Proof. By assumption $g^{-1}(\mathcal{G}) \subset \mathcal{F}$ and $f^{-1}(\mathcal{F}) \subset \mathcal{M}$ so that
\[(g \circ f)^{-1}(\mathcal{G}) = f^{-1}(g^{-1}(\mathcal{G})) \subset f^{-1}(\mathcal{F}) \subset \mathcal{M}. \]
Definition 6.13 (σ - Algebras Generated by Functions). Let X be a set and suppose there is a collection of measurable spaces $\{(Y_\alpha, \mathcal{F}_\alpha) : \alpha \in A\}$ and functions $f_\alpha : X \to Y_\alpha$ for all $\alpha \in A$. Let $\sigma(f_\alpha : \alpha \in A)$ denote the smallest σ-algebra on X such that each f_α is measurable, i.e.,

$$\sigma(f_\alpha : \alpha \in A) = \sigma(\cup_{\alpha \in A} f_\alpha^{-1}(\mathcal{F}_\alpha)).$$

Example 6.14. Suppose that Y is a finite set, $\mathcal{F} = 2^Y$, and $X = Y^N$ for some $N \in \mathbb{N}$. Let $\pi_i : Y^N \to Y$ be the projection maps, $\pi_i(y_1, \ldots, y_N) = y_i$. Then, as the reader should check,

$$\sigma(\pi_1, \ldots, \pi_n) = \{A \times A^{N-n} : A \subset A^n\}.$$

Proposition 6.15. Assuming the notation in Definition 6.13 and additionally let (Z, \mathcal{M}) be a measurable space and $g : Z \to X$ be a function. Then g is $(\mathcal{M}, \sigma(f_\alpha) : \alpha \in A)$-measurable iff $f_\alpha \circ g$ is $(\mathcal{M}, \mathcal{F}_\alpha)$-measurable for all $\alpha \in A$.

Proof. (\Rightarrow) If g is $(\mathcal{M}, \sigma(f_\alpha) : \alpha \in A)$-measurable, then the composition $f_\alpha \circ g$ is $(\mathcal{M}, \mathcal{F}_\alpha)$-measurable by Lemma 6.12 (\Leftarrow) Let

$$\mathcal{G} = \sigma(f_\alpha : \alpha \in A) = \sigma(\cup_{\alpha \in A} f_\alpha^{-1}(\mathcal{F}_\alpha)).$$

If $f_\alpha \circ g$ is $(\mathcal{M}, \mathcal{F}_\alpha)$-measurable for all α, then

$$g^{-1}f_\alpha^{-1}(\mathcal{F}_\alpha) \subset \mathcal{M} \forall \alpha \in A$$

and therefore

$$g^{-1} \left(\cup_{\alpha \in A} f_\alpha^{-1}(\mathcal{F}_\alpha) \right) = \cup_{\alpha \in A} g^{-1}f_\alpha^{-1}(\mathcal{F}_\alpha) \subset \mathcal{M}.$$

Hence

$$g^{-1}(\mathcal{G}) = g^{-1} \left(\sigma(\cup_{\alpha \in A} f_\alpha^{-1}(\mathcal{F}_\alpha)) \right) = \sigma(g^{-1}(\cup_{\alpha \in A} f_\alpha^{-1}(\mathcal{F}_\alpha))) \subset \mathcal{M},$$

which shows that g is $(\mathcal{M}, \mathcal{G})$ - measurable.

Definition 6.16. A function $f : X \to Y$ between two topological spaces is Borel measurable if $f^{-1}(\mathcal{B}_Y) \subset \mathcal{B}_X$.

Proposition 6.17. Let X and Y be two topological spaces and $f : X \to Y$ be a continuous function. Then f is Borel measurable.

Proof. Using Lemma 3.26 and $\mathcal{B}_Y = \sigma(\tau_Y)$, $f^{-1}(\mathcal{B}_Y) = f^{-1}(\sigma(\tau_Y)) = \sigma(f^{-1}(\tau_Y)) \subset \sigma(\tau_X) = \mathcal{B}_X$.

Example 6.18. For $i = 1, 2, \ldots, n$, let $\pi_i : \mathbb{R}^n \to \mathbb{R}$ be defined by $\pi_i(x) = x_i$. Then each π_i is continuous and therefore $\mathcal{B}_{\mathbb{R}^n}/\mathcal{B}_n$ - measurable.

Lemma 6.19. Let \mathcal{E} denote the collection of open rectangle in \mathbb{R}^n, then $\mathcal{B}_{\mathbb{R}^n} = \sigma(\mathcal{E})$. We also have that $\mathcal{B}_{\mathbb{R}^n} = \sigma(\pi_1, \ldots, \pi_n)$ and in particular, $A_1 \times \cdots \times A_n \in \mathcal{B}_{\mathbb{R}^n}$ whenever $A_i \in \mathcal{B}_R$ for $i = 1, 2, \ldots, n$. Therefore $\mathcal{B}_{\mathbb{R}^n}$ may be described as the σ algebra generated by $\{A_1 \times \cdots \times A_n : A_i \in \mathcal{B}_R\}$.

Proof. Assertion 1. Since $\mathcal{E} \subset \mathcal{B}_{\mathbb{R}^n}$, it follows that $\sigma(\mathcal{E}) \subset \mathcal{B}_{\mathbb{R}^n}$. Let

$$\mathcal{E}_0 := \{(a, b) : a, b \in \mathbb{Q}^n \ni a < b\},$$

where, for $a, b \in \mathbb{R}^n$, we write $a < b$ iff $a_i < b_i$ for $i = 1, 2, \ldots, n$ and let

$$(a, b) = (a_1, b_1) \times \cdots \times (a_n, b_n).$$

(6.2)

Since every open set, $V \subset \mathbb{R}^n$, may be written as a (necessarily) countable union of elements from \mathcal{E}_0, we have

$$V \in \sigma(\mathcal{E}_0) \subset \sigma(\mathcal{E}),$$

i.e. $\sigma(\mathcal{E}_0)$ and hence $\sigma(\mathcal{E})$ contains all open subsets of \mathbb{R}^n. Hence we may conclude that

$$\mathcal{B}_{\mathbb{R}^n} = \sigma(\text{open sets}) \subset \sigma(\mathcal{E}_0) \subset \sigma(\mathcal{E}) \subset \mathcal{B}_{\mathbb{R}^n},$$

Assertion 2. Since each π_i is $\mathcal{B}_{\mathbb{R}^n}/\mathcal{B}_n$ - measurable, it follows that $\sigma(\pi_1, \ldots, \pi_n) \subset \mathcal{B}_{\mathbb{R}^n}$. Moreover, if (a, b) is as in Eq. (6.2), then

$$(a, b) = \cap_{i=1}^n \pi_i^{-1}((a_i, b_i)) \in \sigma(\pi_1, \ldots, \pi_n).$$

Therefore, $\mathcal{E} \subset \sigma(\pi_1, \ldots, \pi_n)$ and $\mathcal{B}_{\mathbb{R}^n} = \sigma(\mathcal{E}) \subset \sigma(\pi_1, \ldots, \pi_n).$

Assertion 3. If $A_i \in \mathcal{B}_R$ for $i = 1, 2, \ldots, n$, then

$$A_1 \times \cdots \times A_n = \cap_{i=1}^n \pi_i^{-1}(A_i) \in \sigma(\pi_1, \ldots, \pi_n) = \mathcal{B}_{\mathbb{R}^n}.$$

Corollary 6.20. If (X, \mathcal{M}) is a measurable space, then

$$f = (f_1, f_2, \ldots, f_n) : X \to \mathbb{R}^n$$

is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}^n})$ - measurable iff $f_i : X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_R)$ - measurable for each i. In particular, a function $f : X \to \mathbb{C}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ - measurable iff Re f and Im f are $(\mathcal{M}, \mathcal{B}_R)$ - measurable.

Proof. This is an application of Lemma 6.19 and Proposition 6.15.
Corollary 6.21. Let \((X, M)\) be a measurable space and \(f, g : X \to \mathbb{C}\) be \((M, B_{\mathbb{C}})\) – measurable functions. Then \(f \pm g\) and \(f \cdot g\) are also \((M, B_{\mathbb{C}})\) – measurable.

Proof. Define \(F : X \to \mathbb{C} \times \mathbb{C}\), \(A_\pm : \mathbb{C} \times \mathbb{C} \to \mathbb{C}\) and \(M : \mathbb{C} \times \mathbb{C} \to \mathbb{C}\) by \(F(x) = (f(x), g(x))\), \(A_\pm(w, z) = w \pm z\) and \(M(w, z) = wz\). Then \(A_\pm\) and \(M\) are continuous and hence \((B_{\mathbb{C}^2}, B_{\mathbb{C}})\) – measurable. Also \(F\) is \((M, B_{\mathbb{C}^2})\) – measurable since \(\pi_1 \circ F = f\) and \(\pi_2 \circ F = g\) are \((M, B_{\mathbb{C}})\) – measurable. Therefore \(A_\pm \circ F = f \pm g\) and \(M \circ F = f \cdot g\), being the composition of measurable functions, are also measurable. ■

As an example of this material, let us give another proof of the existence of i.i.d. simple random variables – see Example 5.26 above.

Theorem 6.22 (Existence of i.i.d simple R.V.’s). This Theorem has been moved to Theorem 7.22 below.

Corollary 6.23 (Independent variables on product spaces). This Corollary has been moved to Corollary 7.23 below.

Lemma 6.24. Let \(\alpha \in \mathbb{C}\), \((X, M)\) be a measurable space and \(f : X \to \mathbb{C}\) be a \((M, B_{\mathbb{C}})\) – measurable function. Then

\[
F(x) := \begin{cases}
\frac{1}{f(x)} & \text{if } f(x) \neq 0 \\
\frac{1}{\alpha} & \text{if } f(x) = 0
\end{cases}
\]

is measurable.

Proof. Define \(i : \mathbb{C} \to \mathbb{C}\) by

\[
i(z) = \begin{cases}
\frac{1}{z} & \text{if } z \neq 0 \\
0 & \text{if } z = 0.
\end{cases}
\]

For any open set \(V \subset \mathbb{C}\) we have

\[
i^{-1}(V) = i^{-1}(V \setminus \{0\}) \cup i^{-1}(V \cap \{0\})
\]

Because \(i\) is continuous except at \(z = 0\), \(i^{-1}(V \setminus \{0\})\) is an open set and hence in \(B_{\mathbb{C}}\). Moreover, \(i^{-1}(V \cap \{0\}) \in B_{\mathbb{C}}\) since \(i^{-1}(V \cap \{0\})\) is either the empty set or the one point set \(\{0\}\). Therefore \(i^{-1}(\tau_{\mathbb{C}}) \subset B_{\mathbb{C}}\) and hence \(i^{-1}(B_{\mathbb{C}}) = i^{-1}(\sigma(\tau_{\mathbb{C}})) = \sigma(i^{-1}(\tau_{\mathbb{C}})) \subset B_{\mathbb{C}}\) which shows that \(i\) is Borel measurable. Since \(F = i \circ f\) is the composition of measurable functions, \(F\) is also measurable. ■

Remark 6.25. For the real case of Lemma 6.24, define \(i\) as above but now take \(z\) to real. From the plot of \(i\), Figure 6.25, the reader may easily verify that \(i^{-1}\left((-\infty, a]\right)\) is an infinite half interval for all \(a\) and therefore \(i\) is measurable.

We will often deal with functions \(f : X \to \bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}\). When talking about measurability in this context we will refer to the \(\sigma\) – algebra on \(\bar{\mathbb{R}}\) defined by

\[
B_{\bar{\mathbb{R}}} := \sigma(\{(a, \infty) : a \in \mathbb{R}\}).
\] (6.3)

Proposition 6.26 (The Structure of \(B_{\bar{\mathbb{R}}}\)). Let \(B_{\mathbb{R}}\) and \(B_{\bar{\mathbb{R}}}\) be as above, then

\[
B_{\bar{\mathbb{R}}} = \{A \subset \bar{\mathbb{R}} : \overline{A \cap \mathbb{R}} \in B_{\mathbb{R}}\}.
\] (6.4)

In particular \(\{\infty\}, \{-\infty\} \in B_{\bar{\mathbb{R}}}\) and \(B_{\mathbb{R}} \subset B_{\bar{\mathbb{R}}}\).

Proof. Let us first observe that

\[
\{-\infty\} = \cap_{n=1}^\infty [-\infty, -n) = \cap_{n=1}^\infty [-n, \infty]^c \in B_{\mathbb{R}},
\]

\[
\{\infty\} = \cap_{n=1}^\infty [n, \infty) \in B_{\mathbb{R}}\] and \(\mathbb{R} = \bar{\mathbb{R}} \setminus \{-\infty, \infty\} \in B_{\bar{\mathbb{R}}}\).

Letting \(i : \mathbb{R} \to \bar{\mathbb{R}}\) be the inclusion map,

\[
i^{-1}(B_{\mathbb{R}}) = \sigma(i^{-1}(\{(a, \infty) : a \in \mathbb{R}\})) = \sigma(\{(i^{-1}(a, \infty)) : a \in \mathbb{R}\})
\]

\[
= \sigma(\{(a, \infty) \cap \mathbb{R} : a \in \mathbb{R}\}) = \sigma(\{(a, \infty) : a \in \mathbb{R}\}) = B_{\mathbb{R}}.
\]

Thus we have shown

\[
B_{\mathbb{R}} = i^{-1}(B_{\bar{\mathbb{R}}}) = \{A \cap \mathbb{R} : A \in B_{\bar{\mathbb{R}}}\}.
\]

This implies:

1. \(A \in B_{\bar{\mathbb{R}}} \implies A \cap \mathbb{R} \in B_{\bar{\mathbb{R}}}\) and
2. if \(A \subset \bar{\mathbb{R}}\) is such that \(A \cap \mathbb{R} \in B_{\mathbb{R}}\) there exists \(B \in B_{\mathbb{R}}\) such that \(A \cap \mathbb{R} = B \cap \mathbb{R}\). Because \(A \mathbb{R} B \subset \{\pm \infty\}\) and \(\{\infty\}, \{-\infty\} \in B_{\bar{\mathbb{R}}}\) we may conclude that \(A \in B_{\bar{\mathbb{R}}}\) as well. ■

This proves Eq. (6.4).

The proofs of the next two corollaries are left to the reader, see Exercises 6.5 and 6.6.
Corollary 6.27. Let \((X, \mathcal{M})\) be a measurable space and \(f : X \to \mathbb{R}\) be a function. Then the following are equivalent:

1. \(f\) is \((\mathcal{M}, \mathcal{B}_\mathbb{R})\) - measurable,
2. \(f^{-1}((a, \infty]) \in \mathcal{M}\) for all \(a \in \mathbb{R}\),
3. \(f^{-1}((-\infty, a]) \in \mathcal{M}\) for all \(a \in \mathbb{R}\),
4. \(f^{-1}((-\infty]) \in \mathcal{M}\), \(f^{-1}([\infty]) \in \mathcal{M}\) and \(f^0 : X \to \mathbb{R}\) defined by

\[
f^0(x) := \begin{cases} f(x) & \text{if } f(x) \in \mathbb{R} \\ 0 & \text{if } f(x) \in \{-\infty, \infty\}\end{cases}
\]

is measurable.

Corollary 6.28. Let \((X, \mathcal{M})\) be a measurable space, \(f, g : X \to \mathbb{R}\) be functions and define \(f \cdot g : X \to \mathbb{R}\) and \((f + g) : X \to \mathbb{R}\) using the conventions, \(0 \cdot \infty = 0\) and \((f + g)(x) = 0\) if \(f(x) = \infty\) and \(g(x) = -\infty\) or \(f(x) = -\infty\) and \(g(x) = \infty\). Then \(f \cdot g\) and \(f + g\) are measurable functions on \(X\) if both \(f\) and \(g\) are measurable.

Exercise 6.5. Prove Corollary 6.27, noting that the equivalence of items 1, 2, 3. is a direct analogue of Corollary 6.6. Use Proposition 6.26 to handle item 4.

Proposition 6.29 (Closure under sups, infs and limits). Suppose that \((X, \mathcal{M})\) is a measurable space and \(f_j : (X, \mathcal{M}) \to \mathbb{R}\) for \(j \in \mathbb{N}\) is a sequence of \(\mathcal{M}/\mathcal{B}_\mathbb{R}\) - measurable functions. Then

\[
\sup_j f_j, \quad \inf_j f_j, \quad \limsup_{j \to \infty} f_j \quad \text{and} \quad \liminf_{j \to \infty} f_j
\]

are all \(\mathcal{M}/\mathcal{B}_\mathbb{R}\) - measurable functions. (Note that this result is in general false when \((X, \mathcal{M})\) is a topological space and measurable is replaced by continuous in the statement.)

Proof. Define \(g_+(x) := \sup_j f_j(x)\), then

\[
\{x : g_+(x) \leq a\} = \{x : f_j(x) \leq a \quad \forall j\} = \bigcap_j \{x : f_j(x) \leq a\} \in \mathcal{M}
\]

so that \(g_+\) is measurable. Similarly if \(g_-(x) = \inf_j f_j(x)\) then

\[
\{x : g_-(x) \geq a\} = \bigcap_j \{x : f_j(x) \geq a\} \in \mathcal{M}.
\]

Since

\[
\limsup_{j \to \infty} f_j = \inf_n \sup \{f_j : j \geq n\} \quad \text{and} \quad \liminf_{j \to \infty} f_j = \sup_n \inf \{f_j : j \geq n\}
\]

we are done by what we have already proved.

Definition 6.30. Given a function \(f : X \to \mathbb{R}\) let \(f_+(x) := \max\{f(x), 0\}\) and \(f_-(x) := \max\{-f(x), 0\} = -\min\{f(x), 0\}\). Notice that \(f = f_+ - f_-\).

Corollary 6.31. Suppose \((X, \mathcal{M})\) is a measurable space and \(f : X \to \mathbb{R}\) is a function. Then \(f\) is measurable iff \(f_\pm\) are measurable.

Proof. If \(f\) is measurable, then Proposition 6.29 implies \(f_\pm\) are measurable. Conversely if \(f_\pm\) are measurable then so is \(f = f_+ - f_-\).

Definition 6.32. Let \((X, \mathcal{M})\) be a measurable space. A function \(\varphi : X \to \mathbb{F}\) (\(\mathbb{F}\) denotes either \(\mathbb{R}\), \(\mathbb{C}\) or \([0, \infty) \subset \mathbb{R}\)) is a simple function if \(\varphi\) is \(\mathcal{M}/\mathcal{B}_\mathbb{F}\) measurable and \(\varphi(X)\) contains only finitely many elements.

Any such simple functions can be written as

\[
\varphi = \sum_{i=1}^n \lambda_i 1_{A_i} \text{ with } A_i \in \mathcal{M} \text{ and } \lambda_i \in \mathbb{F}. \quad (6.5)
\]

Indeed, take \(\lambda_1, \lambda_2, \ldots, \lambda_n\) to be an enumeration of the range of \(\varphi\) and \(A_i = \varphi^{-1}\{\lambda_i\}\). Note that this argument shows that any simple function may be written intrinsically as

\[
\varphi = \sum_{y \in \mathbb{F}} y 1_{\varphi^{-1}\{y\}}. \quad (6.6)
\]

The next theorem shows that simple functions are “pointwise dense” in the space of measurable functions.

Theorem 6.33 (Approximation Theorem). Let \(f : X \to [0, \infty]\) be measurable and define, see Figure 6.3,

\[
\varphi_n(x) := \sum_{k=0}^{n2^n-1} \frac{k}{2^n} f\left(\left(\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right)(x) + \frac{n1f^{-1}(\{n2^n, \infty\})}{2^n}(x)
\]

then \(\varphi_n \leq f\) for all \(n\), \(\varphi_n(x) \uparrow f(x)\) for all \(x \in X\) and \(\varphi_n \uparrow f\) uniformly on the sets \(X_M := \{x \in X : f(x) \leq M\}\) with \(M < \infty\).

Moreover, if \(f : X \to \mathbb{C}\) is a measurable function, then there exists simple functions \(\varphi_n\) such that \(\lim_{n \to \infty} \varphi_n(x) = f(x)\) for all \(x\) and \(|\varphi_n| \uparrow |f|\) as \(n \to \infty\).

Proof. Since

\[
\left(\frac{k}{2^n}, \frac{k+1}{2^n}\right] = \left(\frac{2k}{2n+1}, \frac{2k+1}{2n+1}\right] \cup \left(\frac{2k+1}{2n+1}, \frac{2k+2}{2n+1}\right].
\]
if $x \in f^{-1}\left(\left(\frac{2k}{2^n+1}, \frac{2k+1}{2^n+1}\right]\right)$ then $\varphi_n(x) = \varphi_{n+1}(x) = \frac{2k}{2^n+1}$ and if $x \in f^{-1}\left(\left(\frac{2k+1}{2^n+1}, \frac{2k+2}{2^n+1}\right]\right)$ then $\varphi_n(x) = \frac{2k+1}{2^n+1} = \varphi_{n+1}(x).$ Similarly

$$(2^n, \infty] = (2^n, 2^{n+1}) \cup (2^{n+1}, \infty],$$

and so for $x \in f^{-1}(2^{n+1}, \infty]$, $\varphi_n(x) = 2^n < 2^{n+1} = \varphi_{n+1}(x)$ and for $x \in f^{-1}(2^n, 2^{n+1})$, $\varphi_{n+1}(x) \geq 2^n = \varphi_n(x)$. Therefore $\varphi_n \leq \varphi_{n+1}$ for all n. It is clear by construction that $\varphi_n(x) \leq f(x)$ for all x and that $0 \leq f(x) - \varphi_n(x) \leq 2^{-n}$ if $x \in X_{2^n}$. Hence we have shown that $\varphi_n(x) \uparrow f(x)$ for all $x \in X$ and $\varphi_n \uparrow f$ uniformly on bounded sets. For the second assertion, first assume that $f : X \to \mathbb{R}$ is a measurable function and choose φ_n^{\pm} to be simple functions such that $\varphi_n^{\pm} \uparrow f$ as $n \to \infty$ and define $\varphi_n = \varphi_n^{+} - \varphi_n^{-}$. Then

$$|\varphi_n| = \varphi_n^{+} + \varphi_n^{-} \leq \varphi_{n+1}^{+} + \varphi_{n+1}^{-} = |\varphi_{n+1}|$$

and clearly $|\varphi_n| = \varphi_n^{+} + \varphi_n^{-} \uparrow f_+ + f_- = |f|$ and $\varphi_n = \varphi_n^{+} - \varphi_n^{-} \to f_+ - f_- = f$ as $n \to \infty$. Now suppose that $f : X \to \mathbb{C}$ is measurable. We may now choose simple function u_n and v_n such that $|u_n| \uparrow |\text{Re} f|$, $|v_n| \uparrow |\text{Im} f|$, $u_n \to \text{Re} f$ and $v_n \to \text{Im} f$ as $n \to \infty$. Let $\varphi_n = u_n + iv_n$, then

$$|\varphi_n|^2 = u_n^2 + v_n^2 \uparrow |\text{Re} f|^2 + |\text{Im} f|^2 = |f|^2$$

and $\varphi_n = u_n + iv_n \to \text{Re} f + i \text{Im} f = f$ as $n \to \infty$.

\[\text{Fig. 6.3. Constructing simple functions approximating a function, } f : X \to [0, \infty].\]
Independence

7.1 π – λ and Monotone Class Theorems

Definition 7.1. Let \(C \subset 2^\Omega \) be a collection of sets.

1. \(C \) is a **monotone class** if it is closed under countable increasing unions and countable decreasing intersections.
2. \(C \) is a **\(\pi \) – class** if it is closed under finite intersections and \(\sigma \) – system.
3. \(C \) is a **\(\lambda \)–class** if \(C \) satisfies the following properties:
 - a) \(X \in C \)
 - b) If \(A, B \in C \) and \(A \subset B \), then \(B \setminus A \in C \). (Closed under proper differences.)
 - c) If \(A_n \in C \) and \(A_n \uparrow A \), then \(A \in C \). (Closed under countable increasing unions.)

Remark 7.2. If \(C \) is a collection of subsets of \(\Omega \) which is both a \(\lambda \) – class and a \(\pi \) – system then \(C \) is a \(\sigma \) – algebra. Indeed, since \(A^c = X \setminus A \), we see that any \(\lambda \) - system is closed under complementation. If \(C \) is also a \(\pi \) – system, it is closed under intersections and therefore \(C \) is an algebra. Since \(C \) is also closed under increasing unions, \(C \) is a \(\sigma \) – algebra.

Lemma 7.3 (Alternate Axioms for a \(\lambda \) – System*). Suppose that \(\mathcal{L} \subset 2^\Omega \) is a collection of subsets \(\Omega \). Then \(\mathcal{L} \) is a \(\lambda \) – class iff \(\lambda \) satisfies the following postulates:

1. \(X \in \mathcal{L} \)
2. \(A \in \mathcal{L} \) implies \(A^c \in \mathcal{L} \). (Closed under complementation.)
3. If \(\{A_n\}_{n=1}^\infty \subset \mathcal{L} \) are disjoint, the \(\sum_{n=1}^\infty A_n \in \mathcal{L} \). (Closed under disjoint unions.)

Proof. Suppose that \(\mathcal{L} \) satisfies a. – c. above. Clearly then postulates 1. and 2. hold. Suppose that \(A, B \in \mathcal{L} \) such that \(A \cap B = \emptyset \), then \(A \subset B^c \) and

\[
A^c \cap B^c = B^c \setminus A \in \mathcal{L}.
\]

Taking complements of this result shows \(A \cup B \in \mathcal{L} \) as well. So by induction, \(B_m := \sum_{n=1}^m A_n \in \mathcal{L} \). Since \(B_m \uparrow \sum_{n=1}^\infty A_n \) it follows from postulate c. that \(\sum_{n=1}^\infty A_n \in \mathcal{L} \).

Now suppose that \(\mathcal{L} \) satisfies postulates 1. – 3. above. Notice that \(\emptyset \in \mathcal{L} \) and by postulate 3., \(\mathcal{L} \) is closed under finite disjoint unions. Therefore if \(A, B \in \mathcal{L} \) with \(A \subset B \), then \(B^c \in \mathcal{L} \) and \(A \cap B^c = \emptyset \) allows us to conclude that \(A \cup B^c \in \mathcal{L} \). Taking complements of this result shows \(B \setminus A = A^c \cap B \in \mathcal{L} \) as well, i.e. postulate b. holds. If \(A_n \in \mathcal{L} \) with \(A_n \uparrow A \), then \(B_n := A_n \setminus A_{n-1} \in \mathcal{L} \) for all \(n \), where by convention \(A_0 = \emptyset \). Hence it follows by postulate 3 that \(\cup_{n=1}^\infty A_n = \sum_{n=1}^\infty B_n \in \mathcal{L} \).

Theorem 7.4 (Dynkin’s \(\pi \) – \(\lambda \) Theorem). If \(\mathcal{L} \) is a \(\lambda \) class which contains a \(\sigma \) – class, \(\mathcal{P} \), then \(\sigma(\mathcal{P}) \subset \mathcal{L} \).

Proof. We start by proving the following assertion; for any element \(C \in \mathcal{L} \), the collection of sets,

\[
\mathcal{L}^C := \{ D \in \mathcal{L} : C \cap D \in \mathcal{L} \},
\]

is a \(\lambda \) – system. To prove this claim, observe that: a. \(X \in \mathcal{L}^C \), b. if \(A \subset B \) with \(A, B \in \mathcal{L}^C \), then \(A \cap C, B \cap C \in \mathcal{L} \) with \(A \cap C \subset B \cap C \) and \((B \setminus A) \cap C = [B \cap C] \setminus A = [B \cap C] \setminus [A \cap C] \in \mathcal{L} \).

Therefore \(\mathcal{L}^C \) is closed under proper differences. Finally, c. if \(A_n \in \mathcal{L}^C \) with \(A_n \uparrow A \), then \(A_n \cap C \in \mathcal{L} \) and \(A_n \cap C \uparrow A \cap C \in \mathcal{L} \), i.e. \(A \in \mathcal{L}^C \). Hence we have verified \(\mathcal{L}^C \) is still a \(\lambda \) – system.

For the rest of the proof, we may assume with out loss of generality that \(\mathcal{L} \) is the smallest \(\lambda \) – class containing \(\mathcal{P} \) – if not just replace \(\mathcal{L} \) by the intersection of all \(\lambda \) – classes containing \(\mathcal{P} \). Then for \(C \in \mathcal{P} \) we know that \(\mathcal{L}^C \subset \mathcal{L} \) is a \(\lambda \) - class containing \(\mathcal{P} \) and hence \(\mathcal{L}^C = \mathcal{L} \). Since \(C \in \mathcal{P} \) was arbitrary, we have shown, \(C \cap D \in \mathcal{L} \) for all \(C \in \mathcal{P} \) and \(D \in \mathcal{L} \). We may now conclude that if \(C \in \mathcal{L} \), then \(\mathcal{P} \subset \mathcal{L}^C \subset \mathcal{L} \) and hence again \(\mathcal{L}^C = \mathcal{L} \). Since \(C \in \mathcal{L} \) is arbitrary, we have shown \(C \cap D \in \mathcal{L} \) for all \(C, D \in \mathcal{L} \), i.e. \(\mathcal{L} \) is a \(\pi \) – system. So by Remark \(\Leftrightarrow \)

\(\mathcal{L} \) is a \(\sigma \) algebra. Since \(\sigma(\mathcal{P}) \) is the smallest \(\sigma \) – algebra containing \(\mathcal{P} \) it follows that \(\sigma(\mathcal{P}) \subset \mathcal{L} \).

As an immediate corollary, we have the following uniqueness result.

Proposition 7.5. Suppose that \(\mathcal{P} \subset 2^\Omega \) is a \(\pi \) – system. If \(P \) and \(Q \) are two probability measures on \(\sigma(\mathcal{P}) \) such that \(P = Q \) on \(\mathcal{P} \), then \(P = Q \) on \(\sigma(\mathcal{P}) \).
Proof. Let \(\mathcal{L} := \{ A \in \sigma (\mathcal{P}) : P(A) = Q(A) \} \). One easily shows \(\mathcal{L} \) is a \(\lambda \) -class which contains \(\mathcal{P} \) by assumption. Indeed, \(\Omega \in \mathcal{P} \subset \mathcal{L} \), if \(A, B \in \mathcal{L} \) with \(A \subset B \), then
\[
P(B \setminus A) = P(B) - P(A) = Q(B) - Q(A) = Q(B \setminus A)
\]
so that \(B \setminus A \in \mathcal{L} \), and if \(A_n \in \mathcal{L} \) with \(A_n \uparrow A \), then \(P(A) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} Q(A_n) = Q(A) \) which shows \(A \in \mathcal{L} \). Therefore \(\sigma (\mathcal{P}) \subset \mathcal{L} = \sigma (\mathcal{P}) \) and the proof is complete.

Example 7.6. Let \(\Omega := \{ a, b, c, d \} \) and let \(\mu \) and \(\nu \) be the probability measure on \(2^\Omega \) determined by, \(\mu \{ \{x\} \} = \frac{1}{4} \) for all \(x \in \Omega \) and \(\nu \{ \{a\} \} = \nu \{ \{d\} \} = \frac{1}{8} \) and \(\nu \{ \{b\} \} = \nu \{ \{c\} \} = 3/8 \). In this example,
\[
\mathcal{L} := \{ A \in 2^\Omega : P(A) = Q(A) \}
\]
is \(\lambda \) - system which is not an algebra. Indeed, \(A = \{ a, b \} \) and \(B = \{ a, c \} \) are in \(\mathcal{L} \) but \(A \cap B \notin \mathcal{L} \).

Corollary 7.7. A probability measure, \(P \), on \((\mathbb{R}, \mathcal{B}_\mathbb{R}) \) is uniquely determined by its distribution function,
\[
F(x) := P((\infty, x]).
\]

Definition 7.8. Suppose that \(\{X_i\}_{i=1}^\infty \) is a sequence of random variables on a probability space, \((\Omega, \mathcal{B}, P)\). The measure, \(\mu = P \circ (X_1, \ldots, X_n)^{-1} \) on \(\mathcal{B}_\mathbb{R} \) is called the joint distribution of \((X_1, \ldots, X_n) \). To be more explicit,
\[
\mu(B) := P((X_1, \ldots, X_n) \in B) := P(\{ \omega \in \Omega : (X_1(\omega), \ldots, X_n(\omega)) \in B \})
\]
for all \(B \in \mathcal{B}_\mathbb{R} \).

Corollary 7.9. The joint distribution, \(\mu \), is uniquely determined from the knowledge of
\[
P((X_1, \ldots, X_n) \in A_1 \times \cdots \times A_n) \quad \text{for all} \quad A_i \in \mathcal{B}_\mathbb{R}
\]
or from the knowledge of
\[
P(X_1 \leq x_1, \ldots, X_n \leq x_n) \quad \text{for all} \quad A_i \in \mathcal{B}_\mathbb{R}
\]
for all \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \).

Proof. Apply Proposition 7.5 with \(\mathcal{P} \) being the \(\pi \) - systems defined by
\[
\mathcal{P} := \{ A_1 \times \cdots \times A_n \in \mathcal{B}_\mathbb{R} : A_i \in \mathcal{B}_\mathbb{R} \}
\]
for the first case and
\[
\mathcal{P} := \{ (-\infty, x_1] \times \cdots \times (-\infty, x_n] \in \mathcal{B}_\mathbb{R} : x_i \in \mathbb{R} \}
\]
for the second case.

Definition 7.10. Suppose that \(\{X_i\}_{i=1}^\infty \) and \(\{Y_i\}_{i=1}^\infty \) are two finite sequences of random variables on two probability spaces, \((\Omega, \mathcal{B}, P)\) and \((\mathcal{F}, Q)\) respectively. We write \((X_1, \ldots, X_n) \overset{d}{=} (Y_1, \ldots, Y_n) \) if \((X_1, \ldots, X_n) \) and \((Y_1, \ldots, Y_n) \) have the same distribution, i.e. if
\[
P((X_1, \ldots, X_n) \in B) = Q((Y_1, \ldots, Y_n) \in B) \quad \text{for all} \quad B \in \mathcal{B}_\mathbb{R}^n.
\]
More generally, if \(\{X_i\}_{i=1}^\infty \) and \(\{Y_i\}_{i=1}^\infty \) are two sequences of random variables on two probability spaces, \((\Omega, \mathcal{B}, P)\) and \((\mathcal{F}, Q)\) we write \(\{X_i\}_{i=1}^\infty \overset{d}{=} \{Y_i\}_{i=1}^\infty \)
iff \((X_1, \ldots, X_n) \overset{d}{=} (Y_1, \ldots, Y_n) \) for all \(n \in \mathbb{N} \).

Exercise 7.1. Let \(\{X_i\}_{i=1}^\infty \) and \(\{Y_i\}_{i=1}^\infty \) be two sequences of random variables such that \((X_i)_{i=1}^\infty \overset{d}{=} (Y_i)_{i=1}^\infty \). Let \(\{S_n\}_{n=1}^\infty \) and \(\{T_n\}_{n=1}^\infty \) be defined by, \(S_n := X_1 + \cdots + X_n \) and \(T_n := Y_1 + \cdots + Y_n \). Prove the following assertions.
1. Suppose that \(f : \mathbb{R}^n \rightarrow \mathbb{R}^k \) is a \(\mathcal{B}_\mathbb{R}^n/\mathcal{B}_\mathbb{R}^k \) - measurable function, then \(f(X_1, \ldots, X_n) \overset{d}{=} f(Y_1, \ldots, Y_n) \).
2. Use your result in item 1. to show \(\{S_n\}_{n=1}^\infty \overset{d}{=} \{T_n\}_{n=1}^\infty \).

Hint: apply item 1. with \(k = n \) and a judiciously chosen function, \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \).
3. Show \(\limsup_{n \to \infty} X_n \overset{d}{=} \limsup_{n \to \infty} Y_n \) and similarly that \(\liminf_{n \to \infty} X_n \overset{d}{=} \liminf_{n \to \infty} Y_n \).

Hint: with the aid of the set identity,
\[
\left\{ \limsup_{n \to \infty} X_n \geq x \right\} = \{X_n \geq x \text{ i.o.}\},
\]
show
\[
P \left(\limsup_{n \to \infty} X_n \geq x \right) = \lim_{n \to \infty} \lim_{m \to \infty} P \left(\bigcup_{k=n}^m \{X_k \geq x\} \right).
\]
To use this identity you will also need to find \(B \in \mathcal{B}_{\mathbb{R}^m} \) such that
\[
\bigcup_{k=n}^m \{X_k \geq x\} = \{(X_1, \ldots, X_m) \in B\}.
\]

7.1.1 The Monotone Class Theorem (This subsection may be safely skipped!)

Lemma 7.11 (Monotone Class Theorem*). Suppose \(A \subset 2^\mathcal{X} \) is an algebra and \(\mathcal{C} \) is the smallest monotone class containing \(A \). Then \(\mathcal{C} = \sigma(A) \).

Proof. For \(C \in \mathcal{C} \) let
\[
\mathcal{C}(C) = \{ B \in \mathcal{C} : C \cap B, C \cap B^c, B \cap C^c \in \mathcal{C} \},
\]

then \(C(C) \) is a monotone class. Indeed, if \(B_n \in C(C) \) and \(B_n \uparrow B \), then \(B_n^c \downarrow B^c \) and so

\[
C \ni C \cap B_n \uparrow C \cap B \\
C \ni C \cap B_n^c \downarrow C \cap B^c \quad \text{and} \\
C \ni B_n \cap C^c \uparrow B \cap C^c.
\]

Since \(C \) is a monotone class, it follows that \(C \cap B, C \cap B^c, B \cap C^c \in C \), i.e. \(B \in C(C) \). This shows that \(C(C) \) is closed under increasing limits and a similar argument shows that \(C(C) \) is closed under decreasing limits. Thus we have shown that \(C(C) \) is a monotone class for all \(C \in C \). If \(A \in A \subset C \), then \(A \cap B, A \cap B^c, B \cap A \in C \) for all \(B \in A \) and hence it follows that \(A \subset C(A) \subset C \). Since \(C \) is the smallest monotone class containing \(A \) and \(C(A) \) is a monotone class containing \(A \), we conclude that \(C(A) = C \) for any \(A \in A \). Let \(B \in C \) and notice that \(A \in C(B) \) happens iff \(B \in C(A) \). This observation and the fact that \(C(A) = C \) for all \(A \in A \) implies \(A \subset C(B) \subset C \) for all \(B \in C \). Again since \(C \) is the smallest monotone class containing \(A \) and \(C(B) \) is a monotone class we conclude that \(C(B) = C \) for all \(B \in C \). That is to say, if \(A, B \in C \) then \(A \cap B, A \cap B^c, A^c \cap B \in C \). So \(C \) is closed under complements (since \(X \in A \subset C \)) and finite intersections and increasing unions from which it easily follows that \(C \) is a \(\sigma \)– algebra.

Exercise 7.2. Suppose that \(A \subset 2^\Omega \) is an algebra, \(B := \sigma(A) \), and \(P \) is a probability measure on \(B \). Show, using the \(\pi–\lambda \) theorem, that for every \(B \in B \) there exists \(A \in A \) such that for every \(B \in B \)

\[A \triangle B := (A \setminus B) \cup (B \setminus A) \]

is the symmetric difference of \(A \) and \(B \).

Hints:

1. It may be useful to observe that

\[1_{A \triangle B} = |1_A - 1_B| \]

so that \(P(A \triangle B) = \mathbb{E}|1_A - 1_B| \).

2. Also observe that if \(B = \cup B_i \) and \(A = \cup_i A_i \), then

\[B \setminus A \subset \cup_i (B_i \setminus A_i) \subset \cup_i A_i \setminus B_i \] and

\[A \setminus B \subset \cup_i (A_i \setminus B_i) \subset \cup_i A_i \setminus B_i \]

so that

\[A \triangle B \subset \cup_i (A_i \triangle B_i). \]

3. We also have

\[
(B_2 \setminus B_1) \setminus (A_2 \setminus A_1) = B_2 \cap B_1^c \cap (A_2 \setminus A_1)^c = B_2 \cap B_1^c \cap (A_1^c \cap A_2^c) = [B_2 \cap B_1^c \cap A_2^c] \cup [B_2 \cap B_1^c \cap A_1] \subset (B_2 \setminus A_2) \cup (A_1 \setminus B_1)
\]

and similarly,

\[
(A_2 \setminus A_1) \setminus (B_2 \setminus B_1) \subset (A_2 \setminus A_2) \cup (A_1 \setminus B_2) \cup (B_1 \setminus A_1)
\]

so that

\[
(A_2 \setminus A_1) \triangle (B_2 \setminus B_1) \subset (A_2 \setminus A_2) \cup (A_1 \setminus B_2) \cup (B_1 \setminus A_1) = (A_1 \triangle B_1) \cup (A_2 \setminus B_2)
\]

4. Observe that \(A_n \in B \) and \(A_n \uparrow A \), then

\[
P(B \triangle A_n) = P(B \setminus A_n) + P(A_n \setminus B) \to P(B \setminus A) + P(A \setminus B) = P(A \triangle B).
\]

5. Let \(L \) be the collection of sets \(B \) for which the assertion of the theorem holds. Show \(L \) is a \(\lambda \)– system which contains \(A \).

Solution to Exercise 7.2. Since \(L \) contains the \(\pi \)– system, \(A \) it suffices by the \(\pi–\lambda \) theorem to show \(L \) is a \(\lambda \)– system. Clearly, \(\Omega \in L \) since \(\Omega \in A \subset L \). If \(B \subset B_2 \) with \(B \in L \) and \(\varepsilon > 0 \), there exists \(A \in A \) such that \(P(B \setminus A_i) = \mathbb{E}|1_{A_i} - 1_{B_i}| < \varepsilon/2 \) and therefore,

\[
P((B_2 \setminus B_1) \triangle (A_2 \setminus A_1)) \leq P((A_1 \setminus B_1) \cup (A_2 \setminus B_2)) \leq P((A_1 \setminus B_1)) + P((A_2 \setminus B_2)) < \varepsilon.
\]

Also if \(B_n \uparrow B \) with \(B_n \in L \), there exists \(A \in A \) such that \(P(B_n \triangle A_n) < \varepsilon/2^{-n} \) and therefore,

\[
P(\cup_n B_n) \triangle (\cup_n A_n) \leq \sum_{n=1}^\infty P(B_n \triangle A_n) < \varepsilon.
\]

Moreover, if we let \(B := \cup_n B_n \) and \(A_N := \cup_{n=1}^N A_n \), then

\[
P(B \setminus A_N) = P(B \setminus A_N) + P(A_N \setminus B) \to P(B \setminus A) + P(A \setminus B) = P(B \triangle A)
\]

where \(A := \cup_n A_n \). Hence it follows for \(N \) large enough that \(P(B \triangle A^N) < \varepsilon. \)
7.2 Basic Properties of Independence

For this section we will suppose that \((\Omega, B, P)\) is a probability space.

Definition 7.12. We say that \(A\) is independent of \(B\) if \(P(A|B) = P(A)\) or equivalently that
\[
P(A \cap B) = P(A) P(B).
\]

We further say a finite sequence of collection of sets, \(\{C_i\}_{i=1}^n\), are independent if
\[
P(\bigcap_{j \in J} A_j) = \prod_{j \in J} P(A_j)
\]
for all \(A_i \in C_i\) and \(J \subset \{1, 2, \ldots, n\}\).

Observe that if \(\{C_i\}_{i=1}^n\), are independent classes then so are \(\{C_i \cup \{X\}\}_{i=1}^n\). Moreover, if we assume that \(X \in C_i\) for each \(i\), then \(\{C_i\}_{i=1}^n\), are independent iff
\[
P(\bigcap_{j=1}^n A_j) = \prod_{j=1}^n P(A_j)
\]
for all \((A_1, \ldots, A_n) \in C_1 \times \cdots \times C_n\).

Theorem 7.13. Suppose that \(\{C_i\}_{i=1}^n\) is a finite sequence of independent \(\pi\)-classes. Then \(\sigma(C_i)\) are also independent.

Proof. As mentioned above, we may always assume with out loss of generality that \(X \in C_i\). Fix, \(A_j \in C_j\) for \(j = 2, 3, \ldots, n\). We will begin by showing that
\[
P(A \cap A_2 \cap \cdots \cap A_n) = P(A) P(A_2) \cdots P(A_n)
\]
for all \(A \in \sigma(C_1)\). \hfill \(7.1\)

Since it is clear that this identity holds if \(P(A_j) = 0\) for some \(j = 2, \ldots, n\), we may assume that \(P(A_j) > 0\) for \(j \geq 2\). In this case we may define,
\[
Q(A) = \frac{P(A \cap A_2 \cap \cdots \cap A_n)}{P(A_2) \cdots P(A_n)} = \frac{P(A \cap A_2 \cap \cdots \cap A_n)}{P(A_2 \cap \cdots \cap A_n)}
= P(A|A_2 \cap \cdots \cap A_n)
\]
for all \(A \in \sigma(C_1)\).

Then equation Eq. \(7.1\) is equivalent to \(P(A) = Q(A)\) on \(\sigma(C_1)\). But this is true by Proposition \(7.5\), using the fact that \(Q = P\) on the \(\pi\)-system, \(C_1\).

Since \((A_2, \ldots, A_n) \in C_2 \times \cdots \times C_n\) were arbitrary we may now conclude that \(\sigma(C_1), C_2, \ldots, C_n\) are independent.

By applying the result we have just proved to the sequence, \(C_2, \ldots, C_n, \sigma(C_1)\) shows that \(\sigma(C_2), C_3, \ldots, C_n, \sigma(C_1)\) are independent. Similarly we show inductively that
\[
\sigma(C_j), C_{j+1}, \ldots, C_n, \sigma(C_1), \ldots, \sigma(C_{j-1})
\]
are independent for each \(j = 1, 2, \ldots, n\). The desired result occurs at \(j = n\). \n
Definition 7.14. A collection of subsets of \(B\), \(\{C_t\}_{t \in T}\) is said to be independent iff \(\{C_t\}_{t \in A}\) are independent for all finite subsets, \(A \subset T\). More explicitly, we are requiring
\[
P(\bigcap_{t \in A} A_t) = \prod_{t \in A} P(A_t)
\]
whenver \(A\) is a finite subset of \(T\) and \(A_t \in C_t\) for all \(t \in A\).

Corollary 7.15. If \(\{C_t\}_{t \in T}\) is a collection of independent classes such that each \(C_t\) is a \(\pi\)-system, then \(\sigma(C_t)\) are independent as well.

Example 7.16. Suppose that \(\Omega = A^n\) where \(A\) is a finite set, \(B = 2^\Omega\), \(P(\{\omega\}) = \prod_{j=1}^n q_j(\omega)\) where \(q_j : A \to [0, 1]\) are functions such that \(\sum_{\lambda \in A} q_j(\lambda) = 1\). Let \(C_t := \{A^{t-1} \times A \times A^{n-t-1} : A \subset A\}\). Then \(\{C_t\}_{t=1}^n\) are independent. Indeed, if \(B_t := A^{t-1} \times A \times A^{n-t-1}\), then
\[
\bigcap B_t = A_1 \times A_2 \times \cdots \times A_n
\]
and we have
\[
P(\bigcap B_t) = \sum_{\omega \in A_1 \times A_2 \times \cdots \times A_n} \prod_{i=1}^n q_i(\omega_i) = \prod_{i=1}^n \sum_{\lambda \in A_i} q_i(\lambda)
\]
while
\[
P(B_t) = \sum_{\omega \in A^{t-1} \times A \times A^{n-t-1}} \prod_{i=1}^n q_i(\omega_i) = \sum_{\lambda \in A_i} q_i(\lambda).
\]

Definition 7.17. A collections of random variables, \(\{X_t : t \in T\}\) are independent iff \(\sigma(X_t) : t \in T\) are independent.

Theorem 7.18. Let \(X := \{X_t : t \in T\}\) be a collection of random variables. Then the following are equivalent:

1. The collection \(X\),
2. \(P(\bigcap_{t \in A} \{X_t \in A_t\}) = \prod_{t \in A} P(X_t \in A_t)\)
for all finite subsets, \(A \subset T\), and all \(A_t \in B_R\) for \(t \in A\).
3. \(P(\bigcap_{t \in A} \{X_t \leq x_t\}) = \prod_{t \in A} P(X_t \leq x_t)\)
for all finite subsets, \(A \subset T\), and all \(x_t \in \mathbb{R}\) for \(t \in A\).
The equivalence of 1. and 2. follows almost immediately from the definition of independence and the fact that \(\sigma (X_i) = \{ \{ X_i \in A \} : A \in \mathcal{B}_\mathbb{R} \} \).

Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary 7.15 with \(\mathcal{C}_i := \{ \{ X \leq a \} : a \in \mathbb{R} \} \) and making use of the observations that \(\mathcal{C}_i \) is a \(\pi \) - system for all \(t \) and that \(\sigma (\mathcal{C}_t) = \sigma (X_t) \).

Example 7.19. Continue the notation of Example 7.16 and further assume that \(\mathcal{A} \subset \mathbb{R} \) and let \(X_i : \Omega \rightarrow \mathcal{A} \) be defined by, \(X_i (\omega) = \omega_i \). Then \(\{ X_i \}_{i=1}^n \) are independent random variables. Indeed, \(\sigma (X_i) = \mathcal{C}_i \) with \(\mathcal{C}_i \) as in Example 7.16.

Alternatively, from Exercise 4.1, we know that

\[
\mathbb{E}_P \left[\prod_{j=1}^n f_i (X_i) \right] = \prod_{i=1}^n \mathbb{E}_P [f_i (X_i)]
\]

for all \(f_i : \mathcal{A} \rightarrow \mathbb{R} \). Taking \(A_i \subset \mathcal{A} \) and \(f_i := 1_{A_i} \) in the above identity shows that

\[
P (X_1 \in A_1, \ldots, X_n \in A_n) = \mathbb{E}_P \left[\prod_{i=1}^n 1_{A_i} (X_i) \right] = \prod_{i=1}^n \mathbb{E}_P [1_{A_i} (X_i)] = \prod_{i=1}^n P(X_i \in A_i)
\]

as desired.

Corollary 7.20. A sequence of random variables, \(\{ X_j \}_{j=1}^k \) with countable ranges are independent iff

\[
P \left(\bigcap_{j=1}^k \{ X_j = x_j \} \right) = \prod_{j=1}^k P (X_j = x_j) \tag{7.2}
\]

for all \(x_j \in \mathbb{R} \).

Proof. Observe that both sides of Eq. (7.2) are zero unless \(x_j \) is in the range of \(X_j \) for all \(j \). Hence it suffices to verify Eq. (7.2) for those \(x_j \in \text{Ran}(X_j) =: R_j \) for all \(j \). Now if \(\{ X_j \}_{j=1}^k \) are independent, then \(\{ X_j = x_j \} \in \sigma (X_j) \) for all \(x_j \in \mathbb{R} \) and therefore Eq. (7.2) holds.

Conversely if Eq. (7.2) and \(V_j \in \mathcal{B}_\mathbb{R} \), then

\[
P \left(\bigcap_{j=1}^k \{ X_j \in V_j \} \right) = P \left(\bigcap_{j=1}^k \sum_{x_j \in V_j \cap R_j} \{ X_j = x_j \} \right)
\]

\[
= P \left(\bigcap_{(x_1, \ldots, x_k) \in \prod_{j=1}^k V_j \cap R_j} \{ \bigcap_{j=1}^k \{ X_j = x_j \} \} \right)
\]

\[
= \sum_{(x_1, \ldots, x_k) \in \prod_{j=1}^k V_j \cap R_j} \prod_{j=1}^k P (X_j = x_j)
\]

\[
= \prod_{j=1}^k \sum_{x_j \in V_j \cap R_j} P (X_j = x_j) = \prod_{j=1}^k P (X_j \in V_j).
\]

Definition 7.21. As sequences of random variables, \(\{ X_n \}_{n=1}^\infty \), on a probability space, \((\Omega, \mathcal{B}, P) \), are iid (= independent and identically distributed) if they are independent and \((X_n)_* P = (X_k)_* P \) for all \(k, n \). That is we should have

\[
P (X_n \in A) = P (X_k \in A) \quad \text{for all } k, n \in \mathbb{N} \text{ and } A \in \mathcal{B}_\mathbb{R}.
\]

Observe that \(\{ X_n \}_{n=1}^\infty \) are iid random variables iff

\[
P (X_1 \in A_1, \ldots, X_n \in A_n) = \prod_{j=1}^n P (X_1 \in A_i) = \prod_{j=1}^n P (X_1 \in A_i) = \prod_{j=1}^n \mu (A_i) \tag{7.3}
\]

where \(\mu = (X_1)_* P \). The identity in Eq. (7.3) is to hold for all \(n \in \mathbb{N} \) and all \(A_i \in \mathcal{B}_\mathbb{R} \).

Theorem 7.22 (Existence of i.i.d simple R.V.’s). Suppose that \(\{ q_i \}_{i=0}^\infty \) is a sequence of positive numbers such that \(\sum_{i=0}^\infty q_i = 1 \). Then there exists a sequence \(\{ X_k \}_{k=1}^\infty \) of simple random variables taking values in \(\Lambda = \{ 0, 1, 2, \ldots, n \} \) on \(((0, 1], \mathcal{B}, m) \) such that

\[
m (\{ X_1 = i_1, \ldots, X_k = i_k \}) = q_{i_1} \cdots q_{i_k}
\]

for all \(i_1, i_2, \ldots, i_k \in \{ 0, 1, 2, \ldots, n \} \) and all \(k \in \mathbb{N} \).

Proof. For \(i = 0, 1, \ldots, n \), let \(\sigma_i = 0 \) and \(\sigma_j := \sum_{i=0}^j q_i \) and for any interval, \((a, b] \), let
Given $i_1, i_2, \ldots, i_k \in \{0, 1, 2, \ldots, n\}$, let

$$J_{i_1, i_2, \ldots, i_k} := T_{i_k}(T_{i_{k-1}}(\ldots T_{i_1}((0, 1]))))$$

and define $\{X_k\}_{k=1}^{\infty}$ on $(0, 1]$ by

$$X_k := \sum_{i_1, i_2, \ldots, i_k \in \{0, 1, 2, \ldots, n\}} i_k 1_{J_{i_1, i_2, \ldots, i_k}},$$

see Figure 7.1. Repeated applications of Corollary 6.21 shows the functions, $X_k : (0, 1] \to \mathbb{R}$ are measurable.

![Figure 7.1](image_url)

Fig. 7.1. Here we suppose that $p_0 = 2/3$ and $p_1 = 1/3$ and then we construct J_i and $J_{l,k}$ for $l, k \in \{0, 1\}$.

Observe that

$$m(T_i((a, b])) = q_i(b - a) = q_i m((a, b]),$$

and so by induction,

$$m(J_{i_1, i_2, \ldots, i_k}) = q_{i_k}q_{i_{k-1}}\ldots q_{i_1}.$$

The reader should convince herself/himself that

$$\{X_1 = i_1, \ldots, X_k = i_k\} = J_{i_1, i_2, \ldots, i_k}$$

and therefore, we have

$$m(\{X_1 = i_1, \ldots, X_k = i_k\}) = m(J_{i_1, i_2, \ldots, i_k}) = q_{i_k}q_{i_{k-1}}\ldots q_{i_1}$$

as desired.

Corollary 7.23 (Independent variables on product spaces). Suppose $A = \{0, 1, 2, \ldots, n\}$, $q_i > 0$ with $\sum_i q_i = 1$, $\Omega = \Lambda^\infty = \Lambda^\mathbb{N}$, and for $i \in \mathbb{N}$, let $Y_i : \Omega \to \mathbb{R}$ be defined by $Y_i(\omega) = \omega_i$ for all $\omega \in \Omega$. Further let $B := \sigma(Y_1, Y_2, \ldots, Y_n, \ldots)$. Then there exists a unique probability measure, $P : B \to [0, 1]$ such that

$$P(\{Y_1 = i_1, \ldots, Y_k = i_k\}) = q_{i_1}\ldots q_{i_k}.$$

Proof. Let $\{X_i\}_{i=1}^n$ be as in Theorem 7.22 and define $T : (0, 1] \to \Omega$ by

$$T(x) = (X_1(x), X_2(x), \ldots, X_k(x), \ldots).$$

Observe that T is measurable since $Y_i \circ T = X_i$ is measurable for all i. We now define, $P := T_* m$. Then we have

$$P(\{Y_1 = i_1, \ldots, Y_k = i_k\}) = m(T^{-1}(\{Y_1 = i_1, \ldots, Y_k = i_k\}))$$

$$= m(\{Y_1 \circ T = i_1, \ldots, Y_k \circ T = i_k\})$$

$$= m(\{X_1 = i_1, \ldots, X_k = i_k\}) = q_{i_1}\ldots q_{i_k}.$$

Theorem 7.24. Given a finite subset, $A \subset \mathbb{R}$ and a function $q : A \to [0, 1]$ such that $\sum_{\lambda \in A} q(\lambda) = 1$, there exists a probability space, (Ω, \mathcal{B}, P) and an independent sequence of random variables, $\{X_n\}_{n=1}^{\infty}$ such that $P(X_n = \lambda) = q(\lambda)$ for all $\lambda \in A$.

Proof. Use Corollary 7.20 to shows that random variables constructed in Example 5.20 or Theorem 7.22 fit the bill.

Proposition 7.25. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of iid random variables with distribution, $P(X_n = 0) = P(X_n = 1) = \frac{1}{2}$. If we let $U := \sum_{n=1}^{\infty} 2^{-n} X_n$, then $P(U \leq x) = \left(0 \vee x\right) \wedge 1$, i.e. U has the uniform distribution on $[0, 1]$.

Proof. Let us recall that \(P(X_n = 0 \text{ a.a.}) = P(X_n = 1 \text{ a.a.}) \). Hence we may, by shrinking \(\Omega \) if necessary, assume that \(\{X_n = 0 \text{ a.a.}\} = \emptyset = \{X_n = 1 \text{ a.a.}\} \). With this simplification, we have

\[
\left\{ U < \frac{1}{2} \right\} = \{X_1 = 0\}, \ \
\left\{ U < \frac{1}{4} \right\} = \{X_1 = 0, X_2 = 0\} \text{ and } \left\{ \frac{1}{2} \leq U < \frac{3}{4} \right\} = \{X_1 = 1, X_2 = 0\}
\]

and hence that

\[
\left\{ U < \frac{3}{4} \right\} = \left\{ U < \frac{1}{2} \right\} \cup \left\{ \frac{1}{2} \leq U < \frac{3}{4} \right\} = \{X_1 = 0\} \cup \{X_1 = 1, X_2 = 0\}.
\]

From these identities, it follows that

\[
P(U < 0) = 0, \ P\left(U < \frac{1}{4}\right) = \frac{1}{4}, \ P\left(U < \frac{1}{2}\right) = \frac{1}{2}, \text{ and } P\left(U < \frac{3}{4}\right) = \frac{3}{4}.
\]

More generally, we claim that if \(x = \sum_{j=1}^{n} \varepsilon_j 2^{-j} \) with \(\varepsilon_j \in \{0, 1\} \), then

\[
P(U < x) = x.
\]

(7.5)

The proof is by induction on \(n \). Indeed, we have already verified (7.5) when \(n = 1, 2 \). Suppose we have verified (7.5) up to some \(n \in \mathbb{N} \) and let \(x = \sum_{j=1}^{n} \varepsilon_j 2^{-j} \) and consider

\[
P(U < x + 2^{-(n+1)}) = P(U < x) + P\left(x \leq U < x + 2^{-(n+1)}\right) = x + P\left(x \leq U < x + 2^{-(n+1)}\right).
\]

Since

\[
\left\{ x \leq U < x + 2^{-(n+1)} \right\} = \left[\bigcap_{j=1}^{n} \{X_j = \varepsilon_j\} \right] \cap \{X_{n+1} = 0\}
\]

we see that

\[
P\left(x \leq U < x + 2^{-(n+1)}\right) = 2^{-(n+1)}
\]

and hence

\[
P\left(U < x + 2^{-(n+1)}\right) = x + 2^{-(n+1)}
\]

which completes the induction argument.

Since \(x \to P(U < x) \) is left continuous we may now conclude that \(P(U < x) = x \) for all \(x \in (0, 1) \) and since \(x \to x \) is continuous we may also deduce that \(P(U \leq x) = x \) for all \(x \in (0, 1) \). Hence we may conclude that

\[
P(U \leq x) = (0 \lor x) \land 1.
\]

\[
\square
\]

Lemma 7.26. Suppose that \(\{\mathcal{B}_t : t \in T\} \) is an independent family of \(\sigma \)-fields. And further assume that \(T = \sum_{s \in S} T_s \) and let

\[
\mathcal{B}_{T_s} = \bigvee_{t \in T_s} \mathcal{B}_s = \sigma(\bigcup_{t \in T_s} \mathcal{B}_s).
\]

Then \(\{\mathcal{B}_{T_s}\}_{s \in S} \) is an independent family of \(\sigma \)-fields.

Proof. Let

\[
\mathcal{C}_s = \{\cap_{\alpha < K} \mathcal{B}_\alpha : \mathcal{B}_\alpha \in \mathcal{B}_s, \ K \subset C \in T_s\}.
\]

It is now easily checked that \(\{\mathcal{C}_s\}_{s \in S} \) is an independent family of \(\pi \)-systems. Therefore \(\{\mathcal{B}_{T_s} = \sigma(\mathcal{C}_s)\}_{s \in S} \) is an independent family of \(\sigma \)-algebras.

\[
\square
\]

We may now show the existence of independent random variables with arbitrary distributions.

Theorem 7.27. Suppose that \(\{\mu_n\}_{n=1}^\infty \) are a sequence of probability measures on \((\mathbb{R}, \mathcal{B}_\mathbb{R}) \). Then there exists a probability space, \((\Omega, \mathcal{F}, P) \) and a sequence \(\{Y_n\}_{n=1}^\infty \) of independent random variables with \(\text{Law}(Y_n) = P \circ Y_n^{-1} = \mu_n \) for all \(n \).

Proof. By Theorem 7.24 there exists a sequence of iid random variables, \(\{Z_n\}_{n=1}^\infty \), such that \(P(Z_n = 1) = P(Z_n = 0) = \frac{1}{2} \). These random variables may be put into a two dimensional array, \(\{X_{ij} : i, j \in \mathbb{N}\} \), see the proof of Lemma 3.8. For each \(i \), let \(U_i := \sum_{j=1}^{\infty} 2^{-i} X_{ij} - \sigma(\{X_{ij}\}_{j=1}^\infty) \) be measurable random variable. According to Proposition 7.25 \(U_i \) is uniformly distributed on \([0, 1] \). Moreover by the grouping Lemma 7.26 \(\sigma(\{X_{ij}\}_{j=1}^\infty) \) are independent \(\sigma \)-algebras and hence \(\{U_i\}_{i=1}^\infty \) is a sequence of iid random variables with the uniform distribution.

Finally, let \(F_i(x) := \mu(\{x, \infty\}) \) for all \(x \in \mathbb{R} \) and let \(G_i(y) = \inf \{x : F_i(x) \geq y\} \). Then according to Theorem 6.11 \(Y_i := G_i(U_i) \) has \(\mu_i \) as its distribution. Moreover each \(Y_i \) is \(\sigma(\{X_{ij}\}_{j=1}^\infty) \) measurable and therefore the \(\{Y_i\}_{i=1}^\infty \) are independent random variables.

\[
\square
7.2.1 An Example of Ranks

Let \(\{X_n\}_{n=1}^{\infty} \) be iid with common continuous distribution function, \(F \). In this case we have, for any \(i \neq j \), that

\[
P(X_i = X_j) = \mu_F \otimes \mu_F (\{(x, x) : x \in \mathbb{R}\}) = 0.
\]

This may be proved directly with some work or will be an easy consequence of Fubini’s theorem to be considered later. For the direct proof, let \(\{a_l\}_{l=-\infty}^{\infty} \) be a sequence such that, \(a_l < a_{l+1} \) for all \(l \in \mathbb{Z} \), \(\lim_{l \to -\infty} a_l = \infty \) and \(\lim_{l \to \infty} a_l = -\infty \). Then

\[
\{(x, x) : x \in \mathbb{R}\} \subset \bigcup_{l \in \mathbb{Z}} [(a_l, a_{l+1}) \times (a_l, a_{l+1})]
\]

and therefore,

\[
P(X_i = X_j) \leq \sum_{l \in \mathbb{Z}} P(X_i \in (a_l, a_{l+1}], X_j \in (a_l, a_{l+1}]) = \sum_{l \in \mathbb{Z}} [F(a_{l+1}) - F(a_l)]^2
\]

\[
\leq \sup_{l \in \mathbb{Z}} [F(a_{l+1}) - F(a_l)] \sum_{l \in \mathbb{Z}} [F(a_{l+1}) - F(a_l)] = \sup_{l \in \mathbb{Z}} [F(a_{l+1}) - F(a_l)].
\]

Since \(F \) is continuous and \(F(\infty+) = 1 \) and \(F(\infty-) = 0 \), it is easily seen that \(F \) is uniformly continuous on \(\mathbb{R} \). Therefore, if we choose \(a_l = \frac{l}{N} \), we have

\[
P(X_i = X_j) \leq \lim_{N \to \infty} \sup_{l \in \mathbb{Z}} \left[F\left(\frac{l+1}{N}\right) - F\left(\frac{l}{N}\right)\right] = 0.
\]

Let

\[
R_n := \sum_{j=1}^{n} 1_{X_j \geq X_n}
\]

be the rank of \(X_n \) out of \((X_1, \ldots, X_n) \). For example if \((X_1, X_2, X_3, X_4, X_5, \ldots) = (9, -8, 3, 7, 23, \ldots) \), we have \(R_1 = 1, R_2 = 2, R_3 = 2, \) and \(R_4 = 2, R_5 = 1 \). Observe that rank order, from lowest to highest, of \((X_1, X_2, X_3, X_4, X_5) \) is \((X_2, X_3, X_4, X_1, X_5) \). This can be determined by the values of \(R_i \) for \(i = 1, 2, \ldots, 5 \) as follows. Since \(R_5 = 1 \), we must have \(X_5 \) in the last slot, i.e. \((*, *, *, *, X_5)\). Since \(R_4 = 2 \), we know out of the remaining slots, \(X_4 \) must be in the second from the far most right, i.e. \((*, *, X_4, *, X_5)\). Since \(R_3 = 2 \), we know that \(X_3 \) is again the second from the right of the remaining slots, i.e. we now know, \((*, X_3, X_4, *, X_5)\). Similarly, \(R_2 = 2 \) implies \((X_2, X_3, X_4, *, X_5)\) and finally \(R_1 = 1 \) gives, \((X_2, X_3, X_4, X_1, X_5)\). As another example, if \(R_i = i \) for \(i = 1, 2, \ldots, n_\), then \(X_n < X_{n-1} < \cdots < X_1 \).

Theorem 7.28 (Renyi Theorem). Let \(\{X_n\}_{n=1}^{\infty} \) be iid and assume that \(F(x) := P(X_n \leq x) \) is continuous. The \(\{R_n\}_{n=1}^{\infty} \) is an independent sequence,

\[
P(R_n = k) = \frac{1}{n} \quad \text{for} \quad k = 1, 2, \ldots, n,
\]

and the events, \(A_n = \{X_n \text{ is a record}\} = \{R_n = 1\} \) are independent as \(n \) varies and

\[
P(A_n) = P(R_n = 1) = \frac{1}{n}.
\]

Proof. By Problem 6 on p. 110 of Resnick, \((X_1, \ldots, X_n)\) and \((X_\sigma, \ldots, X_\sigma_n)\) have the same distribution for any permutation \(\sigma \).

Since \(F \) is continuous, it now follows that up to a set of measure zero,

\[
\Omega = \sum_{\sigma} \{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\}
\]

and therefore

\[
1 = P(\Omega) = \sum_{\sigma} P(\{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\})
\]

Since \(P(\{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\}) \) is independent of \(\sigma \) we may now conclude that

\[
P(\{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\}) = \frac{1}{n!}
\]

for all \(\sigma \). As observed before the statement of the theorem, to each realization \((\varepsilon_1, \ldots, \varepsilon_n)\), (here \(\varepsilon_i \in \mathbb{N} \) with \(\varepsilon_1 \leq i \)) of \((R_1, \ldots, R_n)\) there is a permutation, \(\sigma = \sigma(\varepsilon_1, \ldots, \varepsilon_n) \) such that \(X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n} \). From this it follows that

\[
\{(R_1, \ldots, R_n) = (\varepsilon_1, \ldots, \varepsilon_n)\} = \{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\}
\]

and therefore,

\[
P(\{(R_1, \ldots, R_n) = (\varepsilon_1, \ldots, \varepsilon_n)\}) = P(\{X_{\sigma_1} < X_{\sigma_2} < \cdots < X_{\sigma_n}\}) = \frac{1}{n!}
\]

Since

\[
P(\{R_n = \varepsilon_n\}) = \sum_{(\varepsilon_1, \ldots, \varepsilon_{n-1})} P(\{R_1, \ldots, R_n) = (\varepsilon_1, \ldots, \varepsilon_n)\})
\]

\[
= \sum_{(\varepsilon_1, \ldots, \varepsilon_{n-1})} \frac{1}{n!} = (n - 1)! \cdot \frac{1}{n!} = \frac{1}{n}
\]

we have shown that

\[
P(\{(R_1, \ldots, R_n) = (\varepsilon_1, \ldots, \varepsilon_n)\}) = \frac{1}{n!} = \prod_{j=1}^{n} \frac{1}{j} = \prod_{j=1}^{n} P(\{R_j = \varepsilon_j\}).
\]

\[\blacksquare\]
7.3 Borel-Cantelli Lemmas

Lemma 7.29 (First Borel Cantelli-Lemma). Suppose that \(\{A_n\}_{n=1}^\infty \) are measurable sets. If
\[
\sum_{n=1}^\infty P(A_n) < \infty,
\]
then
\[
P(\{A_n \text{ i.o.}\}) = 0.
\]

Proof. First Proof. We have
\[
P(\{A_n \text{ i.o.}\}) = P(\bigcap_{n=1}^\infty B_n) = \lim_{n \to \infty} P(\bigcup_{k \geq n} A_k) = \lim_{n \to \infty} \sum_{k \geq n} P(A_k) = 0.
\]

Second Proof. (Warning: this proof require integration theory which is developed below.) Equation (7.6) is equivalent to
\[
E\left[\sum_{n=1}^\infty 1_{A_n}\right] < \infty
\]
from which it follows that
\[
\sum_{n=1}^\infty 1_{A_n} < \infty \text{ a.s.}
\]
which is equivalent to \(P(\{A_n \text{ i.o.}\}) = 0. \)

Example 7.30. Suppose that \(\{X_n\} \) are Bernoulli random variables with \(P(X_n = 1) = p_n \) and \(P(X_n = 0) = 1 - p_n \). If
\[
\sum_{n=1}^\infty p_n < \infty
\]
then
\[
P(\{X_n = 1 \text{ i.o.}\}) = 0
\]
and hence
\[
P(\{X_n = 0 \text{ a.a.}\}) = 1.
\]
In particular,
\[
P\left(\lim_{n \to \infty} X_n = 0\right) = 1.
\]

Lemma 7.31 (Second Borel-Cantelli Lemma). Suppose that \(\{A_n\}_{n=1}^\infty \) are independent sets. If
\[
\sum_{n=1}^\infty P(A_n) = \infty,
\]
then
\[
P(\{A_n \text{ i.o.}\}) = 1.
\]
Combining this with the first Borel Cantelli Lemma gives the (Borel) Zero-One law,
\[
P\left(\{A_n \text{ i.o.}\} = \begin{cases} 0 & \text{if } \sum_{n=1}^\infty P(A_n) < \infty \\ 1 & \text{if } \sum_{n=1}^\infty P(A_n) = \infty \end{cases}
\]

Proof. As in Eq. (7.7) we have,
\[
P(\{A_n \text{ i.o.}\}) = \lim_{n \to \infty} P(\bigcap_{k \geq n} A_k) = \lim_{n \to \infty} (1 - P(\bigcap_{k \geq n} A_k))
\]
\[
= \lim_{n \to \infty} \lim_{m \to \infty} \left(1 - \prod_{k \geq n} P(A_k)\right)
\]
\[
= \lim_{n \to \infty} \lim_{m \to \infty} \left(1 - \prod_{m \geq k \geq n} (1 - P(A_k))\right).
\]
If \(\lim_{n \to \infty} P(A_n) \neq 0 \), there exists \(\varepsilon > 0 \) such that \(P(A_n) \geq \varepsilon \) for infinitely many \(n \). In this case it is then easily seen that
\[
\lim_{n \to \infty} \left(\prod_{m \geq k \geq n} (1 - P(A_k))\right) = 0 \text{ for all } n
\]
and thus that
\[
P(\{A_n \text{ i.o.}\}) = 1.
\]
Hence we may now assume that \(\lim_{n \to \infty} P(A_n) = 0 \). We then have
\[
\lim_{m \to \infty} \left(\prod_{m \geq k \geq n} (1 - P(A_k))\right) = \lim_{m \to \infty} \left(\exp\left(\sum_{m \geq k \geq n} \ln(1 - P(A_k))\right)\right)
\]
\[
= \left(\exp\left(\lim_{m \to \infty} \sum_{m \geq k \geq n} \ln(1 - P(A_k))\right)\right)
\]
\[
\leq \left(\exp\left(\lim_{m \to \infty} \sum_{m \geq k \geq n} P(A_k)\right)\right) = e^{-\infty} = 0,
\]
see Figure 7.3 below.
Then, again we see that $P\left(\{A_n \text{ i.o.}\}\right) = 1$.

\begin{itemize}
\item Example 7.32 (Example 7.30 continued). Suppose that $\{X_n\}$ are now independent Bernoulli random variables with $P\left(X_n = 1\right) = p_n$ and $P\left(X_n = 0\right) = 1 - p_n$. Then $P\left(\lim_{n \to \infty} X_n = 0\right) = 1$ iff $\sum p_n < \infty$. Indeed, $P\left(\lim_{n \to \infty} X_n = 0\right) = 1$ iff $P\left(X_n = 0 \text{ a.a.}\right) = 1$ iff $P\left(X_n = 1 \text{ i.o.}\right) = 0$ iff $\sum p_n = \sum P\left(X_n = 1\right) < \infty$.
\end{itemize}

Proposition 7.33 (Extremal behaviour of iid random variables). Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of iid random variables and c_n is an increasing sequence of positive real numbers such that for all $\alpha > 1$ we have

\begin{equation}
\sum_{n=1}^{\infty} P\left(X_1 > \alpha^{-1} c_n\right) = \infty
\end{equation}

while

\begin{equation}
\sum_{n=1}^{\infty} P\left(X_1 > \alpha c_n\right) < \infty.
\end{equation}

Then

\begin{equation}
\limsup_{n \to \infty} \frac{X_n}{c_n} = 1 \text{ a.s.}
\end{equation}

Proof. By the second Borel-Cantelli Lemma, Eq. (7.9) implies

\[P\left(X_n > \alpha^{-1} c_n \text{ i.o. } n\right) = 1 \]

from which it follows that

\[\limsup_{n \to \infty} \frac{X_n}{c_n} \geq \alpha^{-1} \text{ a.s..} \]

Talking $\alpha = 1 + /k$, we find

\[P\left(\limsup_{n \to \infty} \frac{X_n}{c_n} \geq 1\right) = P\left(\cap_{k=1}^{\infty} \left\{\limsup_{n \to \infty} \frac{X_n}{c_n} \geq (1 + 1/k)^{-1}\right\}\right) = 1.\]

Similarly, by the first Borel-Cantelli lemma, Eq. (7.10) implies

\[P\left(X_n > \alpha c_n \text{ i.o. } n\right) = 0 \]

or equivalently,

\[P\left(X_n \leq \alpha c_n \text{ a.a. } n\right) = 1. \]

That is to say,

\[\limsup_{n \to \infty} \frac{X_n}{c_n} \leq \alpha \text{ a.s.} \]

and hence working as above,

\[P\left(\limsup_{n \to \infty} \frac{X_n}{c_n} \leq 1\right) = P\left(\cap_{k=1}^{\infty} \left\{\limsup_{n \to \infty} \frac{X_n}{c_n} \leq 1 + 1/k\right\}\right) = 1. \]

Hence,

\[P\left(\limsup_{n \to \infty} \frac{X_n}{c_n} = 1\right) = P\left(\left\{\limsup_{n \to \infty} \frac{X_n}{c_n} \geq 1\right\} \cap \left\{\limsup_{n \to \infty} \frac{X_n}{c_n} \leq 1\right\}\right) = 1. \]

Example 7.34. Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of independent random variables with exponential distributions determined by

\[P\left(E_n > x\right) = e^{-x} 1_{x \geq 0}. \]

Then for $c_n > 0$, we have

\[\sum_{n=1}^{\infty} P\left(E_n > \alpha c_n\right) = \sum_{n=1}^{\infty} e^{-\alpha c_n} = \sum_{n=1}^{\infty} \left(e^{-c_n}\right)^{\alpha}. \]

Hence if we choose $c_n = \ln n$ so that $e^{-c_n} = 1/n$, then we have

\[\sum_{n=1}^{\infty} P\left(E_n > \alpha \ln n\right) = \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{\alpha} \]

which is convergent iff $\alpha > 1$. So by Proposition 7.33 it follows that

\[\limsup_{n \to \infty} \frac{E_n}{\ln n} = 1 \text{ a.s.} \]
Example 7.35. Suppose now that \(\{X_n\}_{n=1}^{\infty} \) are iid distributed by the Poisson distribution with intensity, \(\lambda \), i.e.

\[
P(X_1 = k) = \frac{\lambda^k}{k!} e^{-\lambda}.
\]

In this case we have

\[
P(X_1 \geq n) = e^{-\lambda} \sum_{k=n}^{\infty} \frac{\lambda^k}{k!} \geq \frac{\lambda^n}{n!} e^{-\lambda}
\]

and

\[
\sum_{k=n}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = \frac{\lambda^n}{n!} e^{-\lambda} \sum_{k=0}^{\infty} \frac{n!}{(k+n)!} \lambda^k \leq \frac{\lambda^n}{n!} e^{-\lambda} \sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k = \frac{\lambda^n}{n!}.
\]

Thus we have shown that

\[
\frac{\lambda^n}{n!} e^{-\lambda} \leq P(X_1 \geq n) \leq \frac{\lambda^n}{n!}.
\]

Thus in terms of convergence issues, we may assume that

\[
P(X_1 \geq x) \sim \frac{\lambda^x}{x!} \sim \frac{\lambda^x}{\sqrt{2\pi x} e^{-x} x^x}
\]

wherein we have used Stirling’s formula,

\[
x! \sim \sqrt{2\pi x} e^{-x} x^x.
\]

Now suppose that we wish to choose \(c_n \) so that

\[
P(X_1 \geq c_n) \sim 1/n.
\]

This suggests that we need to solve the equation, \(x^x = n \). Taking logarithms of this equation implies that

\[
x = \frac{\ln n}{\ln x}
\]

and upon iteration we find,

\[
x = \frac{\ln n}{\ln \left(\frac{\ln n}{\ln x} \right)} = \frac{\ln n}{\ell_2 (n) - \ell_2 (x)} = \frac{\ln n}{\ell_2 (n) - \ell_2 \left(\frac{\ln n}{\ln x} \right)}
\]

where \(\ell_k = \ln \circ \ln \circ \cdots \circ \ln \). Since, \(x \leq \ln (n) \), it follows that \(\ell_3 (x) \leq \ell_3 (n) \) and hence that

\[
x = \frac{\ln (n)}{\ell_2 (n) + O (\ell_3 (n))} = \frac{\ln (n)}{\ell_2 (n)} \left(1 + O \left(\frac{\ell_3 (n)}{\ell_2 (n)} \right) \right).
\]

Thus we are lead to take \(c_n := \frac{\ln (n)}{\ell_2 (n)} \). We then have, for \(\alpha \in (0, \infty) \) that

\[
(\alpha c_n)^{\alpha c_n} = \exp (\alpha c_n [\ln \alpha + \ln c_n])
\]

\[
= \exp \left(\alpha \ln \left(\frac{n}{\ell_2 (n)} \right) \ln \alpha + \ell_2 (n) - \ell_3 (n) \right)
\]

\[
= \exp \left(\alpha \left[\ln \alpha - \ell_3 (n) + 1 \right] \ln (n) \right)
\]

\[
= n^{\alpha (1 + \varepsilon_n (\alpha))}
\]

where

\[
\varepsilon_n (\alpha) := \frac{\ln \alpha - \ell_3 (n)}{\ell_2 (n)}.
\]

Hence we have

\[
P(X_1 \geq \alpha c_n) \sim \frac{\lambda^{\alpha c_n}}{\sqrt{2\pi \alpha c_n e^{-\alpha c_n}}} \sim \frac{(\lambda/e)^{\alpha c_n}}{\sqrt{2\pi \alpha c_n}} \sim n^{\alpha (1 + \varepsilon_n (\alpha))}.
\]

Since

\[
\ln (\lambda/e)^{\alpha c_n} = \alpha c_n \ln (\lambda/e) = \alpha n \ln \left(\frac{n}{\ell_2 (n)} \right) \ln (\lambda/e) = n^{\alpha (\ln (\lambda/e)) \ell_2 (n)}
\]

it follows that

\[
(\lambda/e)^{\alpha c_n} = n^{\alpha (\ln (\lambda/e)) \ell_2 (n)}.
\]

Therefore,

\[
P(X_1 \geq \alpha c_n) \sim \frac{n^\alpha \ln (\lambda/e) \ell_2 (n)}{\ell_2 (n)} \frac{1}{n^{\alpha (1 + \varepsilon_n (\alpha))}} = \frac{\ell_2 (n)}{\ell_2 (n)} \frac{1}{n^{\alpha (1 + \varepsilon_n (\alpha))}}
\]

where \(\delta_n (\alpha) \to 0 \) as \(n \to \infty \). From this observation, we may show,

\[
\sum_{n=1}^{\infty} P(X_1 \geq \alpha c_n) < \infty \text{ if } \alpha > 1 \text{ and }
\]

\[
\sum_{n=1}^{\infty} P(X_1 \geq \alpha c_n) = \infty \text{ if } \alpha < 1
\]

and so by Proposition 7.33 we may conclude that

\[
\lim \sup_{n \to \infty} \frac{X_n}{\ln (n) / \ell_2 (n)} = 1 \text{ a.s.}
\]
7.4 Kolmogorov and Hewitt-Savage Zero-One Laws

Let \(\{X_n\}^\infty_{n=1} \) be a sequence of random variables on a measurable space, \((\Omega, \mathcal{B})\) with \(\mathcal{B} = \sigma(X_1, X_2, \ldots) \). Let \(\mathcal{B}_n := \sigma(X_1, \ldots, X_n) \), \(T_n := \sigma(X_{n+1}, X_{n+2}, \ldots) \), and we will call, \(T := \cap_{n=1}^\infty T_n \), the tail \(\sigma \) - field and events, \(A \in T \), are called tail events.

Example 7.36. Here are some example of tail events and tail measurable random variables:

1. \(\{ \sum_{n=1}^\infty X_n \text{ converges} \} \in T \).
2. \(\limsup_{n \to \infty} X_n \) and \(\liminf_{n \to \infty} X_n \) are \(T \) - measurable.
3. \(\lim X_n \) exists \(\iff \{ \limsup_{n \to \infty} X_n = \liminf_{n \to \infty} X_n \} \in T \).
4. Let \(S_n := X_1 + \cdots + X_n \), then \(\limsup_{n \to \infty} \frac{S_n}{n} = 0 \) \(\iff \{ \text{tail events} \} \in T \). Indeed, for any \(k \in \mathbb{N} \),

\[
\lim_{n \to \infty} \frac{S_n}{n} = \lim_{n \to \infty} \frac{(X_{k+1} + \cdots + X_n)}{n}
\]

from which it follows that \(\{ \limsup_{n \to \infty} \frac{S_n}{n} = 0 \} \in T_k \) for all \(k \).

Definition 7.37. Let \((\Omega, \mathcal{B}, P)\) be a probability space. A \(\sigma \) - field, \(\mathcal{F} \subset \mathcal{B} \) is almost trivial if \(P(\mathcal{F}) = \{0, 1\} \), i.e. \(P(A) \in \{0, 1\} \) for all \(A \in \mathcal{F} \).

Lemma 7.38. Suppose that \(X : \Omega \to \mathbb{R} \) is a random variable which is \(\mathcal{F} \) measurable, where \(\mathcal{F} \subset \mathcal{B} \) is almost trivial. Then there exists \(c \in \mathbb{R} \) such that \(X = c \) a.s.

Proof. Since \(\{X = \infty\} \) and \(\{X = -\infty\} \) are in \(\mathcal{F} \), if \(P(X = \infty) > 0 \) or \(P(X = -\infty) > 0 \), then \(P(X = \infty) = 1 \) or \(P(X = -\infty) = 1 \) respectively. Hence, it suffices to finish the proof in the under the added condition that \(P(X \in \mathbb{R}) = 1 \).

For each \(x \in \mathbb{R} \), \(\{X \leq x\} \in \mathcal{F} \) and therefore, \(P(X \leq x) \) is either 0 or 1. Since the function, \(f(x) := P(X \leq x) \in \{0, 1\} \) is right continuous, non-decreasing and \(f(-\infty) = 0 \) and \(f(+\infty) = 1 \), there is a unique point \(c \in \mathbb{R} \) where \(f(c) = 1 \) and \(f(c^+) = 0 \). At this point, we have \(P(X = c) = 1 \).

Proposition 7.39 (Kolmogorov’s Zero-One Law). Suppose that \(P \) is a probability measure on \((\Omega, \mathcal{B})\) such that \(\{X_n\}^\infty_{n=1} \) are independent random variables. Then \(T \) is almost trivial, i.e., \(P(A) \in \{0, 1\} \) for all \(A \in T \). In particular the tail events in Example 7? have probability either 0 or 1 and \(\limsup_{n \to \infty} X_n \) and \(\liminf_{n \to \infty} X_n \) are both constant a.s.

Proof. Let \(A \in T \). Since \(A \in T_n \) for all \(n \) and \(T_n \) is independent of \(B_n \), it follows that \(A \) is independent of \(\bigcup_{n=1}^\infty B_n \) for all \(n \). Since the latter set is a multiplicative set, it follows that \(A \) is independent of \(\sigma(\bigcup_{n=1}^\infty B_n) = \bigvee_{n=1}^\infty B_n \). But \(A \in B \) and hence \(A \) is independent of itself, i.e.

\[
P(A) = P(A \cap A) = P(A) P(A).
\]

Since the only \(x \in \mathbb{R} \), such that \(x = x^2 \) is \(x = 0 \) or \(x = 1 \), the result is proved.

Now suppose that \(\Omega := \mathbb{R}^\infty = \mathbb{N} \), \(X_n(\omega) = \omega_n \) for all \(\omega \in \Omega \), and \(B := \sigma(X_1, X_2, \ldots) \). We say a permutation (i.e. a bijective map on \(\mathbb{N} \)), \(\pi : \mathbb{N} \to \mathbb{N} \) is finite if \(\pi(n) = n \) for a.a. \(n \). Define \(T_{\pi} : \Omega \to \Omega \) by \(T_{\pi}(\omega) = (\omega_{\pi(1)}, \omega_{\pi(2)}, \ldots) \).

Definition 7.40. The permutation invariant \(\sigma \) - field, \(S \subset B \), is the collection of sets, \(A \in B \) such that \(T_{\pi}^{-1}(A) = A \) for all finite permutations \(\pi \).

In the proof below we will use the identities,

\[
1_{A \triangle B} = |1_A - 1_B| \quad \text{and} \quad P(A \triangle B) = E|1_A - 1_B|.
\]

Proposition 7.41 (Hewitt-Savage Zero-One Law). Let \(P \) be a probability measure on \((\Omega, \mathcal{B})\) such that \(\{X_n\}^\infty_{n=1} \) is an iid sequence. Then \(S \) is almost trivial.

Proof. Let \(B_0 := \bigcup_{n=1}^\infty \sigma(X_1, X_2, \ldots, X_n) \). Then \(B_0 \) is an algebra and \(\sigma(B_0) = B \). By the regularity theorem, for any \(B \in \mathcal{B} \) and \(\varepsilon > 0 \), there exists \(A_n \in B_0 \) such that \(A_n \uparrow C \in (B_0)_\sigma \), \(B \subset C \), and \(P(C \setminus B) < \varepsilon \). Since

\[
P(A_n \Delta B) = P([A_n \setminus B] \cup [B \setminus A_n]) = P(A_n \setminus B) + P(B \setminus A_n)
\]

\[
\to P(C \setminus B) + P(B \setminus C) < \varepsilon,
\]

for sufficiently large \(n \), we have \(P(A_n \Delta B) < \varepsilon \) where \(A_n = A_n \in B_0 \).

Now suppose that \(B \in S, \varepsilon > 0 \), and \(A \in \sigma(X_1, X_2, \ldots, X_n) \subset B_0 \) such that \(P(A \Delta B) < \varepsilon \). Let \(\pi : \mathbb{N} \to \mathbb{N} \) be the permutation defined by \(\pi(j) = j + n \) and \(\pi(j + n) = j + 2n \) for all \(j \in \mathbb{N} \). Since

\[
B = \{(X_1, \ldots, X_n) \in B'\} \Rightarrow \{\omega : (\omega_1, \ldots, \omega_n) \in B'\}
\]

for some \(B' \in B_{\mathbb{R}^n} \), we have

\[
T_{\pi}^{-1}(B) = \{\omega : ((T_{\pi}(\omega))_1, \ldots, (T_{\pi}(\omega))_n) \in B'\}
\]

\[
= \{\omega : (\omega_{n+1}, \ldots, \omega_{2n}) \in B'\}
\]

\[
= \{\omega : (\omega_{n+1}, \ldots, \omega_{2n}) \in B'\}
\]

\[
= \{(X_{n+1}, \ldots, X_{2n}) \in B'\} \in \sigma(X_{n+1}, \ldots, X_{2n}).
\]

it follows that \(B \) and \(T_{\pi}^{-1}(B) \) are independent with \(P(B) = P(T_{\pi}^{-1}(B)) \).

Therefore \(P(B \cap T_{\pi}^{-1}(B) = P(B)^2 \). Combining this observation with the identity, \(P(A) = P(A \cap A) = P(A \cap T_{\pi}^{-1}A) \), we find
\[\left| P(A) - P(B) \right|^2 = \left| P(A \cap T^{-1}_\pi A) - P(B \cap T^{-1}_\pi B) \right| = E \left[1_{A \cap T^{-1}_\pi A} - 1_{B \cap T^{-1}_\pi B} \right] \]
\[\leq E \left| 1_{A \cap T^{-1}_\pi A} - 1_{B \cap T^{-1}_\pi B} \right| = E \left| 1_{A \cap T^{-1}_\pi A} - 1_{B \cap T^{-1}_\pi B} \right| \]
\[= E \left[1_{A \cap T^{-1}_\pi A} - 1_{B \cap T^{-1}_\pi B} \right] \]
\[\leq E \left[1_{A \cap T^{-1}_\pi A} - 1_{B \cap T^{-1}_\pi B} \right] \]
\[= P(A \cap T^{-1}_\pi A) + P(B \cap T^{-1}_\pi B) < 2\varepsilon. \]

Since \(|P(A) - P(B)| \leq P(A \Delta B) < \varepsilon \), it follows that
\[\left| P(A) - [P(A) + O(\varepsilon)] \right|^2 < \varepsilon. \]

Since \(\varepsilon > 0 \) was arbitrary, we may conclude that \(P(A) = P(A)^2 \) for all \(A \in \mathcal{S} \).

Example 7.42 (Some Random Walk 0–1 Law Results). Continue the notation in Proposition 7.41.

1. As above, if \(S_n = X_1 + \cdots + X_n \), then \(P(S_n \in B \text{ i.o.}) \in \{0,1\} \) for all \(B \in \mathcal{B}_\mathbb{R} \). Indeed, if \(\pi \) is a finite permutation,
\[T^{-1}_\pi (\{S_n \in B \text{ i.o.}\}) = \{S_n \circ T_\pi \in B \text{ i.o.}\} = \{S_n \in B \text{ i.o.}\}. \]

Hence \(\{S_n \in B \text{ i.o.}\} \) is in the permutation invariant \(\sigma \)-field. The same goes for \(\{S_n \in B \text{ a.a.}\} \).

2. If \(P(X_1 \neq 0) > 0 \), then \(\limsup_{n \to \infty} S_n = \infty \) a.s. or \(\limsup_{n \to \infty} S_n = -\infty \) a.s. Indeed,
\[T^{-1}_\pi \left\{ \limsup_{n \to \infty} S_n \leq x \right\} = \left\{ \limsup_{n \to \infty} S_n \circ T_\pi \leq x \right\} = \left\{ \limsup_{n \to \infty} S_n \leq x \right\} \]

which shows that \(\limsup_{n \to \infty} S_n \) is \(\mathcal{S} \)-measurable. Therefore, \(\limsup_{n \to \infty} S_n = c \) a.s. for some \(c \in \mathbb{R} \). Since, a.s.,
\[c = \limsup_{n \to \infty} S_{n+1} = \limsup_{n \to \infty} (S_n + X_1) = \limsup_{n \to \infty} S_n + X_1 = c + X_1, \]
we must have either \(c \in \{\pm \infty\} \) or \(X_1 = 0 \) a.s. Since the latter is not allowed, \(\limsup_{n \to \infty} S_n = \infty \) or \(\limsup_{n \to \infty} S_n = -\infty \) a.s.

3. Now assume that \(P(X_1 \neq 0) > 0 \) and \(X_1 \overset{d}{=} -X_1 \), i.e. \(P(X_1 \in A) = P(-X_1 \in A) \) for all \(A \in \mathcal{B}_\mathbb{R} \). From item 2, we know that and from what we have already proved, we know \(\limsup_{n \to \infty} S_n = c \) a.s. with \(c \in \{\pm \infty\} \). Since \(\{X_n\}_{n=1}^\infty \) and \(\{-X_n\}_{n=1}^\infty \) are iid and \(-X_n \overset{d}{=} X_n \), it follows that \(\{X_n\}_{n=1}^\infty \overset{d}{=} \{-X_n\}_{n=1}^\infty \). The results of Exercise 7.1 then imply that \(\limsup_{n \to \infty} S_n \overset{d}{=} \limsup_{n \to \infty} (-S_n) \) and in particular \(\limsup_{n \to \infty} (-S_n) = c \) a.s. as well.

Thus we have
\[c = \limsup_{n \to \infty} (-S_n) = -\liminf_{n \to \infty} S_n \geq -\limsup_{n \to \infty} S_n = -c. \]

Since the \(c = -\infty \) does not satisfy, \(c \geq -c \), we must \(c = \infty \). Hence in this symmetric case we have shown,

\[\limsup_{n \to \infty} S_n = \infty \text{ and } \limsup_{n \to \infty} (-S_n) = \infty \text{ a.s.} \]
or equivalently that
\[\limsup_{n \to \infty} S_n = \infty \text{ and } \liminf_{n \to \infty} S_n = -\infty \text{ a.s.} \]