1.10. Homework #10 (Due in section 3/10/2011).

- Look at (do not hand in) from chapter I (p. 50-53): I.5.P9
- Hand in from chapter I (p. 50-53): I.5.E.4, I.5.E.5 parts a and b only, I.5.P8
- Hand in the following exercises as well.

Exercises 1-4 refer to the following Markov matrix:

\[
P = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1/2 & 1/2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 1/2 & 0 & 0 & 1/2 \\
0 & 0 & 0 & 1/4 & 3/4 & 0
\end{bmatrix}
\]

(1.4)

We will let \(\{X_n\}_{n=0}^{\infty} \) denote the Markov chain associated to \(P \).

Exercise 1. Make a jump diagram for this matrix and identify the recurrent and transient classes. Also find the invariant distributions for the chain restricted to each of the recurrent classes.

Exercise 2. Find all of the invariant distributions for \(P \).

Exercise 3. Compute the hitting probabilities, \(h_5 = P_5(X_n \text{ hits } \{3, 4\}) \) and \(h_6 = P_6(X_n \text{ hits } \{3, 4\}) \).

Exercise 4. Find \(\lim_{n \to \infty} P_6(X_n = j) \) for \(j = 1, 2, 3, 4, 5, 6 \).

Exercise 5. Suppose that \(\{T_1, T_2\} \) are independent random variables with \(T_i \overset{d}{=} E(\lambda_i) \) with \(\lambda_i > 0 \) for \(i = 1, 2 \). Show

\[
P(T_1 + T_2 \in (w, w + dw)) = 1_{w \geq 0} \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left[e^{-\lambda_1 w} - e^{-\lambda_2 w} \right] dw,
\]

i.e. show

\[
\mathbb{E}[f(T_1 + T_2)] = \int_0^\infty f(w) \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left[e^{-\lambda_1 w} - e^{-\lambda_2 w} \right] dw
\]

for all bounded or non-negative functions \(f \). If \(\lambda_1 = \lambda_2 = \lambda \) the above formula should be interpreted as

\[
\mathbb{E}[f(T_1 + T_2)] = \int_0^\infty f(w) \lambda^2 w e^{-\lambda w} \, dw.
\]

(See Exercise 7 for an extension of this last formula.)

Exercise 6. For \(n \in \mathbb{N} \) and \(t > 0 \) show

\[
V_n(t) := \int_{0 \leq s_1 \leq s_2 \leq \cdots \leq s_n \leq t} ds_1 \cdots ds_n = \frac{t^n}{n!}
\]

Hints: first observe that \(V_1(t) = t \). Now show

\[
V_n(t) = \int_0^t V_{n-1}(s) \, ds
\]

and complete the proof by induction.

Exercise 7. Suppose that \(\{T_i\}_{i=1}^n \) are i.i.d. exponential random times with parameter \(\lambda \) and let \(W_n = T_1 + \cdots + T_n \).

Shown

\[
P(W_n \in (w, w + dw)) = \frac{\lambda^n w^{n-1}}{(n-1)!} e^{-\lambda w} dw,
\]

i.e. show

\[
\mathbb{E}[f(W_n)] = \int_0^\infty f(w) \frac{\lambda^n w^{n-1}}{(n-1)!} e^{-\lambda w} dw \text{ for all } f \geq 0.
\]

Hints: 1) write out \(\mathbb{E}[f(W_n)] \) as an \(n \)-fold iterated integral over \(t_1, \ldots, t_n \geq 0 \). Then make the change of variables \(s_i = t_1 + \cdots + t_i \) for \(i = 1, 2, \ldots, n \) (you can do this one by one) and observe the new integral is now over \(0 \leq s_1 \leq s_2 \leq \cdots \leq s_n < \infty \). 2) The integrals involving \(s_1, \ldots, s_{n-1} \) may now be computed using Exercise 6.