Definition. Let \(f : \mathbb{C} \to \mathbb{R} \). We say that \(\lim_{z \to \infty} f(z) = \infty \) if for any \(M \), there exists \(R \) such that if \(|z| \geq R \), then \(f(z) \geq M \).

Theorem 8.8. Let \(a_0, a_1, \ldots, a_n \) be complex numbers, where \(n \geq 1 \) and \(a_n \neq 0 \). Then the polynomial defined by
\[
P(z) = \sum_{k=0}^{n} a_k z^k \quad \text{for} \quad z \in \mathbb{C}
\]
has a zero. I.e., there exists \(z \in \mathbb{C} \) such that \(P(z) = 0 \).

Proof. \(|P(z)|\) acheives its minimum.

Step 1. Since \(a_n \neq 0 \), we may assume without loss of generality that \(a_n = 1 \) (by dividing \(P(z) \) by \(a_n \)). Let \(r = |z| \). Since
\[
P(z) = z^n + \sum_{k=0}^{n-1} a_k z^k ,
\]
we have
\[
|P(z)| \geq |z^n| - \sum_{k=0}^{n-1} |a_k z^k| = r^n - \sum_{k=0}^{n-1} |a_k| r^k = r^n \left(1 - \sum_{k=0}^{n-1} |a_k| r^{k-n}\right).
\]
Since each power \(k - n \) of \(r \) in the sum is negative, we have
\[
\lim_{r \to \infty} \sum_{k=0}^{n-1} |a_k| r^{k-n} = 0.
\]
This implies that
\[
\lim_{z \to \infty} |P(z)| = \infty
\]
in the sense of the definition at the top of the page.

Define \(M = 2 |P(0)| \). Since \(\lim_{z \to \infty} |P(z)| = \infty \), there exists \(R \) such that if \(|z| \geq R \), then \(f(z) \geq M \). Consider the set \(K = \{ z \in \mathbb{C} : |z| \leq R \} \). Since \(K \) is closed and bounded, \(K \) is compact. Hence the restriction of \(f \) to \(K \) acheives its minimum (since \(f \) is continuous). That is, there exists \(z_0 \in \mathbb{C} \) such that
\[
|P(z_0)| = \inf_{z \in K} |P(z)| .
\]
On the other hand,
\[
\inf_{z \in \mathbb{C} - K} |P(z)| \geq M = 2 |P(0)| \geq 2 \inf_{z \in K} |P(z)| = 2 |P(z_0)|
\]
since $0 \in K$. Hence

$$|P(z_0)| = \inf_{z \in \mathbb{C}} |P(z)|.$$

This completes Step 1.

Step 1. If there does not exist a zero of $P(z)$, then we have a contradiction.

Suppose that there does not exist a zero of $P(z)$. Then $|P(z_0)| > 0$. So we can adjust the polynomial $P(z)$ by defining

$$Q(z) = \frac{P(z + z_0)}{P(z_0)}.$$

We have $Q(0) = 1$ and $|Q(z)| \geq 1 = |Q(0)|$ for all $z \in \mathbb{C}$ (this true because $|P(z + z_0)| \geq |P(z_0)|$ for all z).

Since Q is a degree n polynomial, we have

$$Q(z) = \sum_{k=0}^{n} b_k z^k,$$

where $b_n \neq 0$. Note that $b_0 = Q(0) = 1$. Let $j \geq 1$ be the largest integer such that $b_1 = \cdots = b_{j-1} = 0$ and $b_j \neq 0$. We write

$$Q(z) = b_n z^n + \cdots + b_j z^j + 1.$$

Since $-\frac{b_j}{|b_j|}$ is a unit vector, we may write it as

$$-\frac{b_j}{|b_j|} = e^{-i(j\theta)},$$

where i is the imaginary unit complex number. That is,

$$b_j e^{i(j\theta)} = -|b_j|.$$

Consider points of the form $z = re^{i\theta}$, where $r > 0$. We have

$$Q(re^{i\theta}) = b_n r^n e^{i(n\theta)} + \cdots + b_j r^j e^{i(j\theta)} + 1.$$

So (assuming that $-|b_j| r^j + 1 > 0$, i.e., $r < |b_j|^{-1/j}$)

$$|Q(re^{i\theta})| \leq \sum_{k=j+1}^{n} |b_k r^k e^{i(k\theta)}| + |b_j r^j e^{i(j\theta)} + 1|$$

$$= \sum_{k=j+1}^{n} |b_k| r^k - |b_j| r^j + 1$$

$$= \left(\sum_{k=j+1}^{n} |b_k| r^{k-j} - |b_j| \right) r^j + 1$$

where $|b_j| > 0$. Since

$$\lim_{r \to 0} \left(\sum_{k=j+1}^{n} |b_k| r^{k-j} - |b_j| \right) = -|b_j| < 0$$

and since the function $r \mapsto \sum_{k=j+1}^{n} |b_k| r^{k-j} - |b_j|$ is continuous, we have that for $r > 0$ sufficiently small and θ as above,

$$|Q(re^{i\theta})| < 1.$$

This contradicts $|Q(z)| \geq 1$ for all $z \in \mathbb{C}$. □