Math 140B HW1 Answers

HW1, #1. Let h and k be real functions defined in a neighborhood N of $a \in \mathbb{R}$ satisfying \(\lim_{x \to a} h(x) = 0 \) and \(|k(x)| \leq C \) for all $x \in N$, where C is a constant. Prove that

\[
\lim_{x \to a} h(x) k(x) = 0.
\]

Answer: Let $\varepsilon > 0$. Since \(\lim_{x \to 0} h(x) = 0 \) there exist \(\delta > 0 \) such that if \(0 < |x - 0| < \delta \), then \(|h(x) - 0| < \frac{\varepsilon}{C} \). Hence, if \(0 < |x - 0| < \delta \), then using \(|k(x)| \leq C \) we obtain

\[
|h(x)k(x) - 0| = |h(x)||k(x)| < \frac{\varepsilon}{C} \cdot C = \varepsilon.
\]

This proves \(\lim_{x \to 0} h(x)k(x) = 0 \).

HW1, #2. Let $\alpha > 0$ be a constant.

(a) Define $f : \mathbb{R} \to \mathbb{R}$ by \(f(x) = |x|^{\alpha} \sin x \). Prove that $f'(0)$ exists and equals 0.

Answer: For $x \neq 0$ we have

\[
\left| \frac{f(x) - f(0)}{x - 0} \right| = |x|^{\alpha} \left| \frac{\sin x}{x} \right| \leq |x|^{\alpha}.
\]

Since \(\lim_{x \to 0} |x|^{\alpha} = 0 \), by the squeeze theorem we conclude that \(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0 \).

Note that #1 is a version of the squeeze theorem. As such, alternatively we could have argued as follows. For \(x \neq 0 \) we have \(\frac{f(x) - f(0)}{x - 0} = h(x)k(x) \), where \(h(x) = |x|^{\alpha} \) and \(k(x) = \frac{\sin x}{x} \). Since \(\lim_{x \to a} h(x) = 0 \) and \(|k(x)| \leq 1 \), by #1 we have that \(f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} h(x)k(x) = 0 \).

\(\square \)

(b) Define $g : \mathbb{R} \to \mathbb{R}$ by

\[
g(x) = \begin{cases}
|x|^{1+\alpha} \cos \left(\frac{1}{x} \right) & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

Prove that \(g'(0) = 0 \).

Answer: For \(x \neq 0 \) we have

\[
\left| \frac{g(x) - g(0)}{x - 0} \right| = \frac{|x|^{1+\alpha}}{|x|} \left| \cos \left(\frac{1}{x} \right) \right| \leq |x|^{\alpha}.
\]

Again, by the squeeze theorem we conclude that \(g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = 0 \).

\(\square \)

HW1, #3. (Compare with #1 on p. 114.) Let f and g be real functions defined on \mathbb{R} satisfying:

1. \(|f(x) - f(y)| \leq g(x - y) \) for all \(x, y \in \mathbb{R} \),

2. \(\lim_{x \to 0} \frac{g(x)}{x} = 0 \).

Prove that f is constant.

Answer: Again an application of the squeeze theorem. We have

\[
\left| \frac{f(x) - f(y)}{x - y} \right| \leq \left| \frac{g(x - y)}{x - y} \right|,
\]

for all $x, y \in \mathbb{R}$.
so \(\lim_{x \to 0} \frac{g(x)}{x} = 0 \) implies \(f'(y) = \lim_{x \to y} \frac{f(x) - f(y)}{x - y} = 0 \). This implies by Theorem 5.11(b) that \(f \) is constant.

HW1, #4. (a) Let \(g : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(g'(x) > 0 \) for all \(x \neq 0 \). Prove that \(g \) is one-to-one.

Answer: Let \(x_1, x_2 \in \mathbb{R} \) with \(x_1 < x_2 \).

Case 1. \(0 \notin (x_1, x_2) \). By Theorem 5.10, there exists \(c \in (x_1, x_2) \) such that

\[
 g(x_2) - g(x_1) = (x_2 - x_1) g'(c) .
\]

Since \(c \neq 0 \), we have \(g'(c) > 0 \), which implies \(g(x_2) - g(x_1) > 0 \).

Case 2. \(0 \in (x_1, x_2) \). By applying Theorem 5.10 on \([x_1, 0] \) and \([0, x_2] \), we conclude that there exist \(c_1 \in (x_1, 0) \) and \(c_2 \in (0, x_2) \) such that

\[
 g(0) - g(x_1) = (0 - x_1) g'(c_1) > 0 ,
\]

\[
 g(x_2) - g(0) = (x_2 - 0) g'(c_2) > 0 .
\]

Thus

\[
 g(x_2) - g(x_1) = (g(x_2) - g(0)) + (g(0) - g(x_1)) > 0 .
\]

Hence, \(g \) is one-to-one (in fact, it is strictly increasing). \(\square \)

(b) **(Compare with #3 on p. 114.)** Let \(n \) be a positive integer and let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function satisfying \(|f'(x)| \leq Mx^{2n} \), where \(M \) is a nonnegative constant. Prove for \(\varepsilon \in \mathbb{R} \) with \(|\varepsilon| \) sufficiently small (how small depends on \(n \) and \(M \)) that the function

\[
 f_{\varepsilon}(x) = x^{2n+1} + \varepsilon f(x)
\]

is one-to-one on \(\mathbb{R} \).

Answer: Since

\[
 f'_\varepsilon(x) = (2n + 1)x^{2n} + \varepsilon f'(x)
\]

and \(|f'(x)| \leq Mx^{2n} \) for all \(x \in \mathbb{R} \) and where \(M \geq 0 \), we have

\[
 f'_\varepsilon(x) \geq (2n + 1)x^{2n} - \varepsilon Mx^{2n} .
\]

Choose \(\varepsilon \in (0, \frac{2n+1}{M}) \) if \(M > 0 \) and choose any \(\varepsilon > 0 \) if \(M = 0 \). Then \(f'_\varepsilon(x) \geq ax^{2n} \), where \(a = 2n + 1 - \varepsilon M > 0 \). Hence \(f'_\varepsilon(x) > 0 \) for \(x \neq 0 \). We may now apply part (a) to conclude that \(f_{\varepsilon} \) is one-to-one. \(\square \)

HW1, #5. **(This is part of #8 on pp. 114–115.)** Suppose \(f \) is differentiable and \(f' \) is continuous on \([a, b] \) and let \(\varepsilon > 0 \). Prove that there exists \(\delta > 0 \) such that

\[
 \left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \varepsilon
\]

whenever \(0 < |t - x| < \delta \), \(a \leq x \leq b \), \(a \leq t \leq b \).

Answer: Let \(\varepsilon > 0 \). Since \(f' \) is continuous on \([a, b] \) and since \([a, b] \) is compact, by Theorem 4.19 \(f' \) is uniformly continuous. Then there exists \(\delta > 0 \) such that

\[
 |f'(y) - f'(x)| < \varepsilon \quad \text{whenever } |y - x| < \delta .
\]
Let \(a \leq x, t \leq b \). Then there exists \(c \) between \(x \) and \(t \) such that
\[
\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = |f'(c) - f'(x)|.
\]
Hence, if \(0 < |t - x| < \delta \), then \(|c - x| < \delta \), which implies \(|f'(c) - f'(x)| < \varepsilon \). \(\square \)

HW1, #6. Suppose that \(b \in \mathbb{R} \), \(f \) is a twice-differentiable real function on \((b, \infty)\), and define
\[
M_k = \sup_{x \in (b, \infty)} |f^{(k)}(x)| < \infty \quad \text{for } k = 0, 1, 2.
\]
Prove that
\[
M_1^2 \leq 4M_0M_2.
\]
Hint: Let \(a \in (b, \infty) \) and \(x = a + h \), where \(h > 0 \). Then there exists \(c \in (a, a + h) \) such that
\[
f(a + h) = f(a) + f'(a)h + \frac{f''(c)}{2}h^2.
\]
Show that this implies
\[
|f'(a)| \leq \frac{2M_0}{h} + \frac{M_2}{2}h.
\]
This inequality is true for any \(h > 0 \). What choice of \(h \) yields the smallest value for the right-hand side?

Answer: It suffices to prove the theorem for \(b = 0 \). Since \(M_2 > 0 \), we have \(M_0 > 0 \). Let \(a \in (0, \infty) \) and let \(x = a + h \), where \(h > 0 \). By Taylor’s Theorem 5.15, there exists \(c \in (a, a + h) \) such that
\[
f(a + h) = f(a) + f'(a)h + \frac{f''(c)}{2}h^2.
\]
That is,
\[
f'(a) = \frac{f(a + h) - f(a)}{h} - \frac{f''(c)}{2}h.
\]
Taking the supremum of the absolute value of this yields
\[
|f'(a)| \leq \frac{2M_0}{h} + \frac{M_2}{2}h
\]
for any \(h > 0 \). Choosing the minimizing value, which is given by \(\frac{h}{2} = \left(\frac{M_0}{M_2} \right)^{1/2} \), we obtain
\[
|f'(a)| \leq 2 \left(\frac{M_0M_2}{2} \right)^{1/2}.
\]
We conclude that
\[
M_1^2 = \sup_{a \in (0, \infty)} |f'(a)|^2 \leq 4M_0M_2. \quad \square
\]

HW1, #7. (Problem #23 on p. 117) The function \(f \) defined by \(f(x) = \frac{x^3 + 1}{3} \) has three fixed points \(\alpha, \beta, \gamma \), where
\[
-2 < \alpha < -1, \quad 0 < \beta < 1, \quad 1 < \gamma < 2.
\]
For arbitrarily chosen \(x_1 \), define the sequence \(\{x_n\} \) by setting \(x_{n+1} = f(x_n) \).
(a) If \(x_1 < \alpha \), prove that \(x_n \to -\infty \) as \(n \to \infty \).
(b) If \(\alpha < x_1 < \gamma \), prove that \(x_n \to \beta \) as \(n \to \infty \).
(c) If \(\gamma < x_1 \), prove that \(x_n \to +\infty \) as \(n \to \infty \).

Thus \(\beta \) can be located by this method, but \(\alpha \) and \(\gamma \) cannot.

Answer: (Pedantic.)

\[
\text{Graph of } y = \frac{x^3 + 1 - 3x}{3}.
\]

Define
\[
g(x) = f(x) - x = \frac{x^3 + 1 - 3x}{3}.
\]

Then
\[
g(x_n) = f(x_n) - x_n = x_{n+1} - x_n.
\]

Furthermore, the three zeros of \(g \) are \(\alpha \), \(\beta \), \(\gamma \). We have
\[
g(x) < 0 \text{ for } x < \alpha,
g(x) > 0 \text{ for } \alpha < x < \beta,
g(x) < 0 \text{ for } \beta < x < \gamma,
g(x) > 0 \text{ for } x > \gamma.
\]

(a) Suppose \(n \) is such that \(x_n < \alpha \). Then \(g(x_n) < 0 \), which says that \(x_{n+1} < x_n \). One can easily show by induction that if \(x_1 < \alpha \), then the sequence \(\{x_n\} \) is strictly decreasing. We have for \(n \geq 1 \),
\[
\frac{x_{n+1} - x_{n+2}}{x_n - x_{n+1}} = \frac{f(x_n) - f(x_{n+1})}{x_n - x_{n+1}} = f'(c)
\]
for some \(c \in (x_{n+1}, x_n) \) by the mean value theorem. Now \(f'(c) = c^2 > x_1^2 > 1 \) since \(c < x_1 < \alpha < -1 \). From this it is easy to deduce that \(x_n \to -\infty \).

(b) Similarly to (a), if \(x_1 > \gamma \), then \(\{x_n\} \) is strictly increasing and for \(n \geq 1 \),
\[
\frac{x_{n+1} - x_{n+2}}{x_n - x_{n+1}} = f'(c) = c^2 > x_1^2 > 1,
\]
where \(c > x_1 \). This implies \(x_n \to \infty \).

(b) Suppose \(\alpha < x_1 < \gamma \). If \(\alpha = \beta \), then \(x_n \equiv \beta \).

(i) Suppose \(\alpha < x_1 < \beta \). Now suppose that \(n \) is such that \(\alpha < x_n < \beta \). Then \(x_{n+1} - x_n = g(x_n) > 0 \), so that \(x_{n+1} > x_n \). Moreover,
\[
f(x_n) < f(\beta) = \beta
\]
since f is strictly increasing and $x_n < \beta$. Since \{x_n\} is a bounded increasing sequence in (α, β), it converges to some number $x_\infty \in (\alpha, \beta]$. Moreover, by the continuity of f, we have

$$f(x_\infty) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x_\infty.$$

Since β is the only fixed point of f in $(\alpha, \beta]$, we conclude that $x_\infty = \beta$.

(ii) The case where $\beta < x_1 < \gamma$ is similar. \(\Box\)

HW1, #8. (#26 on pp. 119.) Suppose f is differentiable on $[a, b]$, $f(a) = 0$, and there is a real number A such that $|f'(x)| \leq A|f(x)|$ on $[a, b]$. Prove that $f(x) = 0$ for all $x \in [a, b]$.

Hint: Fix $x_0 \in [a, b]$, let

$$M_0 = \sup_{x \in [a, x_0]} |f(x)|, \quad M_1 = \sup_{x \in [a, x_0]} |f'(x)|.$$

Show that if $x \in [a, x_0]$, then

$$|f(x)| \leq M_1 (x_0 - a) \leq A (x_0 - a) M_0.$$

Then show that $M_0 = 0$ if $A (x_0 - a) < 1$. Conclude that $f(x) = 0$ for all $x \in [a, x_1]$. Finally, show by continuing in this way that we obtain $f(x) = 0$ for all $x \in [a, b]$.

Answer: Let $x_0 \in [a, b]$, let $M_0 = \sup_{y \in [a, x_0]} |f(y)|$, and let $M_1 = \sup_{y \in [a, x_0]} |f'(y)|$. Let $x \in [a, x_0]$. Then

$$|f(x)| = \left| f(x) - f(a) \right| \leq \sup_{a \leq y \leq b} |f'(y)||x - a| \leq M_1 (x - a) \leq M_1 (x_0 - a) \leq A M_0 (x_0 - a),$$

where the last inequality is because $|f'(y)| \leq A |f(y)|$ for $y \in [a, b]$.

Let $M = \sup_{y \in [a, b]} |f(y)|$. Let $x_0 = \min \left\{ a + \frac{1}{2M}, b \right\}$, so that $x_0 \leq b$ and $x_0 - a \leq \frac{1}{2M}$. Since $M_0 \leq M$, we have for all $x \in [a, x_0]$,

$$|f(x)| \leq A M_0 (x_0 - a) \leq \frac{A M_0}{2M} \leq \frac{A}{2} = \frac{1}{2} \sup_{y \in [a, x_0]} |f(y)|.$$

This implies $\sup_{y \in [a, x_0]} |f(y)| = 0$, so that $f(x) = 0$ for all $x \in [a, x_0]$.

Assume $x_0 \neq b$ (otherwise we are done). By induction define $x_{n+1} = \min \left\{ x_n + \frac{1}{2M}, b \right\}$. By the same argument as above applied to the interval $[x_n, x_{n+1}]$, we have that if $f(x) = 0$ for all $x \in [a, x_n]$, then $f(x) = 0$ for all $x \in [a, x_{n+1}]$. We conclude that $f(x) = 0$ for all $x \in [a, x_n]$ for all $n \geq 1$. The result follows since there exists n such that $x_n = b$. \(\Box\)