Notes on the EUCLIDEAN ALGORITHM

Recall the following fact about divisors.

Lemma 1 (See Exercise 62 in Chapter 1) Let \(a, b, c, m, n\) be integers. If \(a\) divides both \(b\) and \(c\), then \(a\) divides \(bm + cn\).

Remark 2 For example, since \(6\) divides \(18\) and \(24\), for any \(m, n \in \mathbb{Z}\), we have that \(6\) divides \(18m + 24n\).

Proof of Lemma 1. By hypothesis, there exist \(k, \ell \in \mathbb{Z}\) such that \(b = ka\) and \(c = \ell a\).

This implies \(bm + cn = (ka) m + (\ell a) n = a (mk + n\ell)\).

Since \(mk + n\ell \in \mathbb{Z}\), the conclusion follows. \(\blacksquare\)

Fact. If \(d_1\) and \(d_2\) are natural numbers such that \(d_1 \mid d_2\) and \(d_2 \mid d_1\), then \(d_1 = d_2\). (Reason: \(a \in \mathbb{Z}\), \(b \in \mathbb{N}\), and \(a\mid b\) implies \(a \leq b\).

Definition 3 (gcd) Let \(a\) and \(b\) be integers, not both 0. Then the largest natural number that divides both \(a\) and \(b\) is called the **greatest common divisor** of \(a\) and \(b\) and is denoted by \(\gcd (a, b)\).

Example. The gcd of 18 and 60 is equal to 6.

We have the following fact about the gcd and the division algorithm.

Lemma 4 (See Exercise 92 in Chapter 3) If \(b \in \mathbb{Z} - \{0\}\) and \(a, q, r \in \mathbb{Z}\) satisfy

\[a = bq + r, \]

then

\[\gcd (a, b) = \gcd (b, r). \]

Proof. \((\leq)\) Let \(d = \gcd (b, r)\). Since \(d\mid b\) and \(d\mid r\), by Lemma 1 we have \(d\) divides \(bq + r = a\). That is, \(d\) is a common divisor of \(a\) and \(b\). Hence

\[\gcd (b, r) = d \leq \gcd (a, b). \]

\((\geq)\) Let \(e = \gcd (a, b)\). Since \(e\mid a\) and \(e\mid b\), by Lemma 1 we have \(e\) divides \(a - bq = r\). That is, \(e\) is a common divisor of \(b\) and \(r\). Hence

\[\gcd (a, b) = e \leq \gcd (b, r). \]

We conclude that \(\gcd (a, b) = \gcd (b, r)\). \(\blacksquare\)
Part of the Euclidean algorithm (writing the gcd as a combination of a and b). Let a and b be integers, not both 0. Then there exist integers $m, n \in \mathbb{Z}$ such that
\[\gcd(a, b) = am + bn. \]
For example, since the gcd of 8 and 60 is 4, there exist $m, n \in \mathbb{Z}$ such that
\[4 = 8m + 60n. \]
For example, $4 = 8 \cdot 8 + 60 \cdot (-1)$.

Theorem 5 (See Theorem 3.9) Let a and b be integers, not both 0. Then $\gcd(a, b)$ is the only natural number d such that

1. d divides both a and b, and
2. If c is an integer such that c divides both a and b, then c divides d.1

Proof. By the Euclidean Algorithm (see below), there exist integers $m, n \in \mathbb{Z}$ such that
\[\gcd(a, b) = am + bn. \]
Hence by Lemma 1, if c divides both a and b, then c divides $\gcd(a, b)$. This shows that $\gcd(a, b) \in \mathbb{N}$ has properties (1) and (2).

Suppose $d, d' \in \mathbb{N}$ both satisfy properties (1) and (2). Then $d|d'$ and $d'|d$. So $d = d'$. This proves that $\gcd(a, b)$ is the only natural number satisfying properties (1) and (2). \blacksquare

Example. The gcd of 36 and 60 is equal to 12. (1) 12 divides both 36 and 60. (2) The common divisors of 36 and 60 are
\[1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 12, -12. \]
Each of these common divisors divides 12.

The Euclidean algorithm (to find the gcd and to write it as a combination of a and b).

Example of Euclidean Algorithm. Find the gcd of 4199 and 1748. Applying the division algorithm repeated, we have the following:
\[
\begin{align*}
4199 &= 2 \cdot 1748 + 703, \\
1748 &= 2 \cdot 703 + 342, \\
703 &= 2 \cdot 342 + 19 \\
342 &= 18 \cdot 19 + 0.
\end{align*}
\]
The gcd of 4199 and 1748 is the last nonzero remainder, namely 19.

1If the conclusion was instead that $c \leq d$, we would just be repeating the definition of \gcd.
We can write 19 as a combination of 4199 and 1748 by working backward:

\[19 = 703 - 2 \cdot 342. \]

Substituting 342 = 1748 − 2 · 703,

\[19 = 703 - 2 \cdot (1748 - 2 \cdot 703) \]
\[= -2 \cdot 1748 + 5 \cdot 703. \]

Substituting 703 = 4199 − 2 · 1748,

\[19 = -2 \cdot 1748 + 5 \cdot (4199 - 2 \cdot 1748) \]
\[= 5 \cdot 4199 - 12 \cdot 1748. \]

Lemma 6 If \(d \) is a common divisor of \(a \) and \(b \) and if \(d \) and be written as a combination of \(a \) and \(b \), then \(d = \gcd (a, b) \).

Proof. By hypothesis, there exist integers \(m, n \in \mathbb{Z} \) such that

\[d = am + bn. \quad (1) \]

Suppose \(c \) divides both \(a \) and \(b \). Then by (1), \(c \) divides \(d \). By Theorem 5, \(d = \gcd (a, b) \). □

General Case of the Euclidean Algorithm. Let \(a \in \mathbb{Z} \) and \(b \in \mathbb{N} \). The division algorithm for \((a, b)\) implies that there exist \(q_1, r_1 \in \mathbb{Z} \) such that

\[a = bq_1 + r_1 \quad \text{and} \quad 0 \leq r_1 < b. \]

If \(r_1 = 0 \), then \(a = bq_1 \), so that

\[\gcd (a, b) = b, \]

which of course is a combination of \(a \) and \(b \) (\(= 0 \cdot a + 1 \cdot b \)).

So suppose \(r_1 > 0 \). Then the division algorithm for \((b, r_1)\) implies that there exist \(q_2, r_2 \in \mathbb{Z} \) such that

\[b = r_1q_2 + r_2 \quad \text{and} \quad 0 \leq r_2 < r_1. \]

If \(r_2 = 0 \), then \(b = r_1q_2 \) so that \(r_1 \) divides \(b \). Moreover,

\[a = bq_1 + r_1, \]

so that \(r_1 \) divides \(a \) and

\[r_1 = a - bq_1, \]

which is a combination of \(a \) and \(b \). By Lemma 6, \(r_1 = \gcd (a, b) \).

Continuing this way we get a sequence of divisors:

\[r_1 > r_2 > \cdots > r_n > r_{n+1} = 0. \]

One can show that \(r_n = \gcd (a, b) \). We will not discuss this proof in detail. For the interested reader, see the proof of Theorem 3.9 in the book.