Math 109. Instructor: Chow
Homework #2 Hints

Problem 1: Prove, using logical argument from the definitions, that
\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]
That is, prove that \(x \in A \cup (B \cap C) \) if and only if \(x \in (A \cup B) \cap (A \cup C). \)

Hint: You may use the fact that: ‘\(P \lor (Q \land R) \)’ is logically equivalent to ‘\((P \lor Q) \land (P \lor R) \)’.

Solution:
\[x \in A \cup (B \cap C) \iff x \in A \lor (x \in B \land x \in C) \iff (x \in A \lor x \in B) \land (x \in A \lor x \in C). \]
Here we used the fact that: ‘\(P \lor (Q \land R) \)’ is logically equivalent to ‘\((P \lor Q) \land (P \lor R) \)’.

Problem 2:
(i) Prove: \(\forall x \in \mathbb{Z}^+, \exists y \in \mathbb{Z}^+, y > 3x + 2 \).
(ii) Prove: \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, y > x^2 + 9 \).
(iii) **DIS**Prove: \(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y < x^2 \).
(iv) Disprove: \(\forall n \in \mathbb{Z}^+, \exists m \in \mathbb{Z}^+, n \leq m^2 \leq n + 39 \).

Solution:
(i) Let \(x \) be an arbitrary positive integer. Then let \(y = 3x + 3 \). Clearly \(y > 3x + 2 \), and \(y \) is also a positive integer. This proves the existence of \(y \).

(ii) Let \(x \) be an arbitrary integer. Then let \(y = x^2 + 10 \). Clearly \(y > x^2 + 9 \), and \(y \) is also an integer. This proves existence of \(y \).

(iii) Want to show, \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y \geq x^2 \).
Let \(x \) be an arbitrary real number, let \(y = x^2 + 1 \). Clearly \(y \in \mathbb{R} \) and \(y \geq x^2 \). This proves the existence of \(y \), and hence disproves the original statement.

(iv) Want to show, \(\exists n \in \mathbb{Z}^+, \forall m \in \mathbb{Z}^+, \text{either } m^2 < n \text{ or } m^2 > n + 39 \).
Let \(n = 1601 \in \mathbb{Z}^+, \forall m \in \mathbb{Z}^+, \text{either } m \leq 40 \text{ or } m \geq 41 \), i.e.\(m^2 \leq 1600 < 1601 = n \) or \(m^2 \geq 1681 > 1640 = n + 39 \). This proves the claim, hence disproves the original statement.

Problem 3:
(i) Prove: \(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, 2xy = x^3 + 2x^2 \).
(ii) Disprove: \(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, 2xy > 1 \).
(iii) Prove: \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, (x^2 + 1) y = x^3 + 2x^2 \).
(iv) Prove: \(\forall x \in \mathbb{R} - \mathbb{Q}, \exists y \in \mathbb{R} - \mathbb{Q}, xy = 1 \).
Solution:

(i) Let \(x = 0 \in \mathbb{R} \), then \(\forall y \in \mathbb{R}, \ 2xy = 0 = x^3 + 2x^2 \), this proves the existence of \(x \).

(ii) Want to show, \(\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ 2xy \leq 1 \).
Let \(x \) be an arbitrary real number, Let \(y = 0 \), then \(2xy = 0 \leq 1 \). This proves the existence of \(y \) and hence disproves the original statement.

(iii) Let \(x \) be an arbitrary real number, then \(x^2 + 1 \geq 1 > 0 \), in particular \(x^2 + 1 \neq 0 \). Let \(y = \frac{x^3 + 2x^2}{x^2 + 1} \), then \(y \in \mathbb{R} \) and \(y(x^2 + 1) = \frac{x^3 + 2x^2}{x^2 + 1} \). This proves the existence of \(y \).

(iv) Let \(x \) be an arbitrary irrational number, then \(x \neq 0 \in \mathbb{Q} \). Let \(y = \frac{1}{x} \), then \(y \in \mathbb{R} \) and \(xy = 1 \). Need only to show \(y \in \mathbb{Q} - \mathbb{Q} \).
Suppose this is not true, i.e. \(y \in \mathbb{Q} \). Then \(y = \frac{m}{n} \) for some nonzero integers \(m, n \) (notice here \(y \neq 0 \) since \(y = \frac{1}{x} \)), it follows that \(x = \frac{n}{m} \in \mathbb{Q} \), contradicting that \(x \in \mathbb{R} - \mathbb{Q} \), this proves \(y \in \mathbb{R} - \mathbb{Q} \) and hence the statement.

Problem 4: Let \(n \in \mathbb{Z} \).
Let \(P(n) \) be the statement: \(\exists q \in \mathbb{Z} \) such that \(n = 5q + 3 \).
Let \(Q(n) \) be the statement: \(\exists p \in \mathbb{Z} \) such that \(n^2 = 5p + 4 \).

Prove that \(P(n) \) implies \(Q(n) \).

Solution: \(P(n) \) is true \(\Rightarrow \exists q \in \mathbb{Z}, \) such that \(n = 5q + 3 \Rightarrow n^2 = 25q^2 + 30q + 9 = 5(5q^2 + 6q + 1) + 4 \Rightarrow \exists p = 5q^2 + 6q + 1, \) such that \(n^2 = 5p + 4 \Rightarrow Q(n) \) is true.

Problem 5: Let \(f : [a, b] \to \mathbb{R} \) be a differentiable function. The mean value theorem says that there exists \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \).

Use the mean value theorem to prove that the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = \frac{1}{2}x^3 + 3x^2 + 10x \) is strictly increasing. (Recall that strictly increasing means that for any \(a < b, \ f(a) < f(b) \).

Solution: Let \(a, b \) be two arbitrary real numbers such that \(a < b \), mean value theorem implies that, for some \(c \in (a, b) \) \(f'(c) = \frac{f(b) - f(a)}{b - a} \).

Thus \(f(b) > f(a) \) and \(f \) is strictly increasing.

Problem 6: We say that \(\lim_{x \to \infty} f(x) = \infty \) if for any \(M \in \mathbb{R} \) there exists \(N \in \mathbb{R} \) such that if \(x \geq N \), then \(f(x) \geq M \).

The intermediate value theorem says that if \(f : [a, b] \to \mathbb{R} \) is a continuous function and if \(y \) is between \(f(a) \) and \(f(b) \), then there exists \(x \in (a, b) \) such that \(f(x) = y \).
(a) Define, analogously to the above, what it means for \(\lim_{x \to -\infty} f(x) = -\infty \).

(b) Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function with \(\lim_{x \to -\infty} f(x) = -\infty \) and \(\lim_{x \to \infty} f(x) = \infty \). **Prove:** If \(y \in \mathbb{R} \), then there exists \(x \in \mathbb{R} \) such that \(f(x) = y \).

Solution:

(a) For any \(M \in \mathbb{R} \) there exists \(N \in \mathbb{R} \) such that if \(x \leq N \), then \(f(x) \leq M \).

(b) Let \(y \) be an arbitrary real number, let \(N_1, N_2 \) be such that \(f(x) \leq y - 1 \) whenever \(x \leq N_1 \), and \(f(x) \geq y + 1 \) whenever \(x \geq N_2 \), by definition of \(\lim_{x \to \pm \infty} f(x) = \pm \infty \). Claim that \(N_1 < N_2 \). Suppose this is not true, then \(\exists x_0 \), such that \(N_2 \leq x_0 \leq N_1 \), hence \(f(x_0) \leq y - 1 \) and \(f(x_0) \geq y + 1 \), a contradiction. Applying Intermediate Value Theorem to \(a = N_1 \), \(b = N_2 \) and \(y \in (y - 1, y + 1) \subseteq (f(N_1), f(N_2)) \), the conclusion follows, \(\exists x \in (N_1, N_2) \subseteq \mathbb{R} \), such that \(f(x) = y \).

Problem 7: Let \(\mathbb{I} \) denote the irrational numbers. Define the function

\[
 f : \mathbb{I} \times \mathbb{I} \to \mathbb{R} \times \mathbb{R}
\]

by

\[
 f(x, y) = (x + y, x^2 + y^2).
\]

(i) Does there exist \((x, y) \in \mathbb{I} \times \mathbb{I}\) such that \(f(x, y) \in \mathbb{I} \times \{1\}\)?

(ii) Does there exist \((x, y) \in \mathbb{I} \times \mathbb{I}\) such that \(f(x, y) \in \mathbb{Q} \times \mathbb{I}\)?

Solution:

(i) Yes. Let \(x = y = \sqrt{2} \), then \(f(x, y) = (x + y, x^2 + y^2) = (2, 2) \in \mathbb{I} \times 1 \).

(ii) Yes. Let \(x = \sqrt{2} \), \(y = 1 - \sqrt{2} \), then \(f(x, y) = (x + y, x^2 + y^2) = (1, 5 - 2\sqrt{2}) \in \mathbb{Q} \times \mathbb{I} \).

Problem 8: Given \(n \in \mathbb{N} \), let \(\mathbb{N}_n = \{1, 2, \ldots, n\} = \{a \in \mathbb{Z} \mid 1 \leq a \leq n\} \).

Let \(X \) be a finite set. The number of elements in \(X \), called the cardinality of \(X \), is denoted by \(|X| \). We have \(|X| = n \) if and only if there exists a bijection \(f : \mathbb{N}_n \to X \). Answer correctly the following (no need to prove anything).

(i) If \(X \subseteq Y \), then how are \(|X| \) and \(|Y| \) related?

Ans: \(|X| \leq |Y| \).

(ii) If \(f : A \to B \) is an injection, then how are \(|A| \) and \(|B| \) related?

Ans: \(|A| \leq |B| \).

(iii) If \(g : C \to D \) is a surjection, then how are \(|C| \) and \(|D| \) related?

Ans: \(|C| \geq |D| \).

(iv) If \(h : E \to F \) is a bijection, then how are \(|E| \) and \(|F| \) related?

3
Ans: $|E| = |F|$.

Problem 9: Do Problem 18 on p. 118.

Solution: Let $z \in Z$ be an arbitrary element, by definition of surjection, $\exists y \in Y$, such that $g(y) = z$, and $\exists x \in X$, such that $f(x) = y$. It follows that $g \circ f(x) = g(f(x)) = g(y) = z$, and hence $g \circ f$ is surjective.

Problem 10: Do Problem 20 on p. 118.

Solution:

(i) Let $y \in \overrightarrow{f}(A_1)$. By definition, $\exists x \in A_1$, such that $f(x) = y$. It then follows that $x \in A_1 \subseteq A_2$ and $y = f(x) \in \overrightarrow{f}(A_2)$. Thus $\overrightarrow{f}(A_1) \subseteq \overrightarrow{f}(A_2)$, this completes the proof.

An counterexample for the converse: Let $f : \mathbb{R} \to \mathbb{R}$ be a constant function, i.e. $f(x) \equiv 0$. Let $A_1 = [0, 1]$, $A_2 = [3, 4]$. Obviously, $\overrightarrow{f}(A_1) = \{0\} = \overrightarrow{f}(A_2)$, thus $\overrightarrow{f}(A_1) \subseteq \overrightarrow{f}(A_2)$. However $A_1 \subseteq A_2$ is not true.

A simple condition on f to make the converse come true is that f is injective:

Suppose $\overrightarrow{f}(A_1) \subseteq \overrightarrow{f}(A_2)$ and f is injective, let $x \in A_1$, then $f(x) \in \overrightarrow{f}(A_1) \subseteq \overrightarrow{f}(A_2)$. Thus $\exists x_1 \in A_2$ such that $f(x_1) = f(x)$. By injectivity, $x = x_1 \in A_2$, it follows that $A_1 \subseteq A_2$.

(ii) Let $y \in \overrightarrow{f}(A_1 \cap A_2)$, then $\exists x \in A_1 \cap A_2$, such that $f(x) = y$. It follows from $x \in A_1$ and $x \in A_2$ that $f(x) \in \overrightarrow{f}(A_1)$ and $f(x) \in \overrightarrow{f}(A_2)$, i.e. $y \in \overrightarrow{f}(A_1) \cap \overrightarrow{f}(A_2)$. Therefore, $\overrightarrow{f}(A_1 \cap A_2) \subseteq \overrightarrow{f}(A_1) \cap \overrightarrow{f}(A_2)$.

Take the example in (i). $\overrightarrow{f}(A_1 \cap A_2) = \overrightarrow{f}(\emptyset) = \emptyset$, while $\overrightarrow{f}(A_1) \cap \overrightarrow{f}(A_2) = \{0\} \cap \{0\} = \{0\}$. In this case, the equality does not hold.

(iii) $y \in \overrightarrow{f}(A_1 \cup A_2) \iff \exists x \in A_1 \cup A_2, f(x) = y \iff \exists x \in A_1, f(x) = y$ or $\exists x \in A_2, f(x) = y \iff \exists y \in \overrightarrow{f}(A_1)$ or $\overrightarrow{f}(A_2) \iff y \in \overrightarrow{f}(A_1 \cup A_2)$.

Remark: The original problems #11 and #12 on the inclusion-exclusion principle for 3 sets, have been moved to the 4th HW assignment.