1. Let X be a locally compact Hausdorff (LCH) space, Y a closed subset of X (which is an LCH space in the relative topology), and μ a Radon measure on Y. Define $I : C_c(X) \to \mathbb{C}$ by

$$I(f) = \int (f|_Y) \, d\mu \quad \forall f \in C_c(X),$$

where $f|_Y$ is the restriction of f onto Y. Prove that I is a positive linear functional on $C_c(X)$ and that the induced measure ν on X is given by $\nu(E) = \mu(E \cap Y)$ for any $E \in \mathcal{B}_X$.

2. Let μ be a σ-finite Radon measure on an LCH space X and $A \in \mathcal{B}_X$. Prove that the Borel measure μ_A defined by $\mu_A(E) = \mu(E \cap A)$ ($E \in \mathcal{B}_X$) is a Radon measure on X.

3. Let μ be a Radon measure on an LCH space X.

 (1) Let N be the union of all open $U \subseteq X$ such that $\mu(U) = 0$. Prove that N is open and that $\mu(N) = 0$. The complement of N is called the support of μ and is denoted by supp (μ).

 (2) Prove that $x \in \text{supp} (\mu)$ if and only if

 $$\int f \, d\mu > 0$$

 for every $f \in C_c(X, [0, 1])$ such that $f(x) > 0$.

4. Let μ be a Radon measure on an LCH space X and $\phi \in L^1(\mu)$ with $\phi \geq 0$ on X. Define

$$\nu(E) = \int_E \phi \, d\mu \quad \forall E \in \mathcal{B}_X.$$

 (1) Prove that ν is a Radon measure on X.

 (2) Prove that supp $(\nu) \subseteq \text{supp} (\phi)$ and give an example to show that the strict inclusion can occur.

5. Let X be the one-point compactification of a set with the discrete topology. If μ is a Radon measure on X, then supp (μ) is countable.