Problem 1: Let $X = \mathbb{Z} \times (\mathbb{Z} - \{0\})$ prove that the binary relation
$$ (a, b) \sim (a', b') \iff ab' = a'b $$
is an equivalence relation on X.

Problem 2: Which of the following formulae define a (well-defined) function $f : \mathbb{Q} \to \mathbb{Q}$?
1. $f(a/b) = a^2/b^2$.
2. $f(a/b) = a^2/b^3$.
3. $f(a/b) = b/a$.
4. $f(a/b) = a + b$.
5. $f(a/b) = (a - b)/(2b)$.

Problem 3: Consider the following binary relations \sim on the following sets X. In each case, state whether \sim is reflexive, whether \sim is symmetric, and whether \sim is transitive. For those binary relations which are equivalence relations, describe the equivalence classes.

1. For $X = \mathbb{Z}$, let $a \sim b \iff ab \neq 0$.
2. For $X = \mathbb{Z}$, let $a \sim b \iff ab \geq 0$.
3. For $X = \mathbb{Z}^+$, let $a \sim b \iff ab > 0$.
4. For $X = \mathbb{Z} - \{0\}$, let $a \sim b \iff ab > 0$.
5. For $X = \mathbb{Z}^+$, let $a \sim b \iff ab < 0$.
6. For $X = \mathbb{Z} - \{0\}$, let $a \sim b \iff ab < 0$.

Problem 4: ($\mathbb{N} \sim \mathbb{Z}$) Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ be the set of non-negative integers and consider the addition binary operation
$$ + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}. $$
You may assume that + satisfies the following axioms on \mathbb{N}.
- (Associative) $(a + b) + c = a + (b + c)$ for all $a, b, c \in \mathbb{N}$.
- (Commutative) $a + b = b + a$ for all $a, b \in \mathbb{N}$.
- (Zero) $a + 0 = a$ for all $a \in \mathbb{N}$.
- (Cancellative) For all $a, b, c \in \mathbb{N}$, if $a + c = b + c$, then $a = b$.

Let $X = \mathbb{N} \times \mathbb{N}$ and define the following binary relation \sim on X:
$$ (a, b) \sim (c, d) \iff a + d = b + c. $$
Verify that \sim is an equivalence relation. Let \mathbb{Z} denote the set of equivalence classes
$$ \mathbb{Z} = \{ [a, b] : a, b \in \mathbb{N} \}. $$
Define a binary operation $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by
$$ [a, b] + [c, d] = [a + c, b + d]. $$
Prove that $+$ is well defined. Also prove that

- $+$ is associative: For all $[a, b], [a', b'], [a'', b''] \in \mathbb{Z}$ we have
 \[(a, b) + [a', b']) + [a'', b''] = (a, b) + (a', b') + [a'', b'']\].

- $+$ is commutative: For all $[a, b], [a', b'] \in \mathbb{Z}$ we have
 \[[a, b] + [a', b'] = [a', b'] + [a, b]\].

- There exists a unique $0 \in \mathbb{Z}$ with the property that
 \[[a, b] + 0 = [a, b]\]
 for all $[a, b] \in \mathbb{Z}$.

- For any $[a, b] \in \mathbb{Z}$, there exists $[c, d] \in \mathbb{Z}$ with the property that
 \[[a, b] + [c, d] = 0\].

Problem 5: Suppose that an integer n is a sum of two squares. (i.e., $n = a^2 + b^2$ for some $a, b \in \mathbb{Z}$). Prove that $n = 4q$ or $n = 4q + 1$ or $n = 4q + 2$ for some $q \in \mathbb{Z}$. Deduce that 1234567 is not a sum of two squares.

Problem 6: Use the Euclidean Algorithm to find the greatest common divisor d of $a = 165$ and $b = 252$. Express d as an integer linear combination of a and b.

Problem 7: How many equivalence relations are there on a set of cardinality 5?