Problem 1: Prove that for all real numbers a, b, c, d we have
\[-2ab - 2ac - 2ad - 2bc - 2bd - 2cd \leq a^2 + b^2 + c^2 + d^2.\]

Solution: Let a, b, c, d be real numbers. We have that $0 \leq (a + b + c + d)^2$. Expanding yields $0 \leq a^2 + b^2 + c^2 + d^2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd$. By the Addition Law, we have $-2ab - 2ac - 2ad - 2bc - 2bd - 2cd \leq a^2 + b^2 + c^2 + d^2$, as desired.

Problem 2: Let a be an integer. Prove that 0 divides a if and only if $a = 0$. (Hint: This problem has two parts!)

Solution: Suppose that 0 divides a. By the definition of ‘divides’, there is an integer q such that $a = 0q$, so that $a = 0q = 0$, as desired.

Suppose that $a = 0$. Then we have that $a = 0(1)$, so that 0 divides a, as desired.

Problem 3: Let $a, b,$ and c be integers. Prove that if a divides b or a divides c, then a divides bc.

Solution: Suppose a divides b. Then there exists an integer q such that $b = aq$, so that $bc = a(qc)$ and a divides bc, as desired.

Suppose that a divides c. Then there exists an integer k such that $c = ak$, so that $bc = a(kb)$ and a divides bc, as desired.

Problem 4: For this problem, we define an integer n to be ‘odd’ if there is another integer q such that $n = 2q + 1$. We define an integer n to be ‘even’ if n is not odd.

Prove that if n is an integer and n^2 is even, then n is even.

Solution: Let n be an integer. We will prove the contrapositive statement “if n is odd, then n^2 is odd”.

Assume that n is odd. By definition, this means there is an integer q such that $n = 2q + 1$. So, $n^2 = (2q + 1)^2 = 4q^2 + 4q + 1$ is also odd, as desired.

Problem 5: What is wrong with the following “proof” that 1 is the largest integer?

“Let n be the largest integer. Then, since 1 is an integer we must have $1 \leq n$. On the other hand, since n^2 is also an integer we must have $n^2 \leq n$ from which it follows that $n \leq 1$ (since n is positive). Thus, since $1 \leq n$ and $n \leq 1$ we must have that $n = 1$. Thus 1 is the largest integer as claimed.”

What does this argument prove?

Solution: The first sentence of the argument presented here presupposes the existence of a largest integer. On the other hand, if the first sentence were changed to “Suppose for contradiction that there was a largest integer; call it n.” and if the last sentence were changed to “But since (for example) 1 < 2, 1 is certainly not the largest integer, which is a contradiction.”, this would be a valid proof by contradiction that there is no largest integer.
Problem 6: Recall from class (or from the textbook) that we have the following axioms concerning inequality of real numbers.

1. (Trichotomy Law) For any two real number a and b, one and only one of $a < b$, $a = b$, or $a > b$ holds.
2. (Addition Law) For any three real numbers a, b, and c, we have that $a < b$ if and only if $a + c < b + c$.
3. (Multiplication Law) For any three real numbers a, b, and c, we have that ($a < b$ if and only if $ac < bc$, if $c > 0$) and ($a < b$ if and only if $ac > bc$, if $c < 0$).
4. (Transitive Law) For any three real number a, b, and c, if $a < b$ and $b < c$, then $a < c$.

Use these axioms to prove by contradiction that there is no smallest positive real number.

Solution: Suppose for contradiction that there was a smallest positive real number; call it x. We have that $0 < x$ and since $\frac{1}{2}$ is positive the Multiplication Law implies that $0 = 0(\frac{1}{2}) < \frac{x}{2}$, so that $\frac{x}{2}$ is a positive real number. The Addition Law implies that $\frac{x}{2} = 0 + \frac{x}{2} < \frac{x}{2} + \frac{x}{2} = x$, so that $\frac{x}{2} < x$. This contradicts the assumption that x is the smallest positive real number.