Math 109: Winter 2014
Homework 7 Solutions

1. Let P denote the set of all polynomials with coefficients in \mathbb{Q}. Recall that a polynomial has degree n if it is of the form $a_nx^n + \cdots + a_1x + a_0$ where $a_n \neq 0$. (The zero polynomial 0 has degree zero.) For $n \in \mathbb{Z}^+$, let P_n denote the set of all polynomials with coefficients in \mathbb{Q} having degree n. We have that $P = \bigcup_{n \in \mathbb{Z}^+} P_n$, so to show that P is countable it is enough to show that P_n is countable for all $n \in \mathbb{Z}^+$.

Let $n \in \mathbb{Z}^+$. We define a function $i : P_n \to \mathbb{Q}^{n+1}$ by $i(a_nx^n + \cdots + a_1x + a_0) = (a_n, \ldots, a_1, a_0)$. It is clear that i is an injection. Since finite Cartesian products of countable sets are countable, we know that \mathbb{Q}^{n+1} is countable. Since i is an injection, it follows that P_n is also countable. Therefore, we have that P is countable.

To see that P is denumerable it is enough to show that P is infinite. But this is clear because the rational numbers (viewed as constant polynomials) constitute an infinite subset of P.

2. Let P' denote the set of all polynomials with rational coefficients other than the zero polynomial. By Problem 1 we know that P' is countable. This means we can write $P' = \{f_1, f_2, \ldots\}$. For $n \in \mathbb{Z}^+$, let R_n denote the set of roots of the polynomial f_n. By the fact we are allowed to assume, the set R_n is finite for each $n \in \mathbb{Z}^+$. It follows that $\mathbb{Q} = \bigcup_{n \in \mathbb{Z}^+} R_n$ is a countable union of finite sets, and hence countable.

To see that \mathbb{Q} is denumerable it is enough to show that \mathbb{Q} is infinite. To do this it is enough to show that every rational number is algebraic. But if $a \in \mathbb{Q}$, then a is a solution of the equation $x - a = 0$, so that a is algebraic.

3. Suppose for contradiction that $\mathbb{R} - \mathbb{Q}$ were countable. We have that $\mathbb{R} = (\mathbb{R} - \mathbb{Q}) \cup (\mathbb{R} \cap \mathbb{Q})$. By Problem 2, we know that $\mathbb{R} \cap \mathbb{Q}$ is countable (as it is a subset of a countable set). Therefore, the set \mathbb{R} is a union of two countable sets, and therefore countable. But we know that \mathbb{R} is uncountable, which is a contradiction.

4. Suppose for contradiction that S were countable. Then there would be a bijection $f : \mathbb{Z}^+ \to S$ (the set S is clearly infinite). Let $f(n) = (a_1^n, a_2^n, \ldots)$. Define a new binary sequence $b = (b_1, b_2, \ldots)$, where $b_n = \begin{cases} 1 & a_n^n = 0 \\ 0 & a_n^n = 1 \end{cases}$. For any $n \in \mathbb{Z}^+$, we have that $b \neq f(n)$ because the n^{th} terms of b and $f(n)$ are not the same. Therefore, the sequence b is not contained in the image of f, so f is not surjective. This is a contradiction.

5. Suppose that n can be written as $n = a^2 + b^2$, where $a, b \in \mathbb{Z}$. Then $a = 2k$ or $2k + 1$ and $b = 2m$ or $2m + 1$ for some integers k and m. It follows that $a^2 + b^2$ has one of the forms $(2k)^2 + (2m)^2 = 4(k^2 + m^2)$, $(2k + 1)^2 + (2m)^2 = 4(k^2 + m^2 + k) + 1$, $(2k)^2 + (2m + 1)^2 = 4(k^2 + m^2 + m) + 1$, or $(2k + 1)^2 + (2m + 1)^2 = 4(k^2 + m^2 + k + m) + 2$. In any case, we have that n is of the form $4q, 4q + 1$, or $4q + 2$ for some integer q. Since $1234567 = 4 \times 308641 + 3$, we conclude that 1234567 cannot be written in the form $a^2 + b^2$ for integers a and b.
6. Suppose $5|a$. Then there exists $k \in \mathbb{Z}$ such that $a = 5k$. So $a^2 = 25k^2 = 5(5k^2)$ and $5|a^2$.

Suppose $5 \nmid a$. By the division theorem, a has one of the forms $5k + 1, 5k + 2, 5k + 3$, or $5k + 4$ for some integer k. This means that a^2 has one of the forms
\[
(5k + 1)^2 = 5(5k^2 + 2k) + 1
\]
\[
(5k + 2)^2 = 5(5k^2 + 4k) + 4
\]
\[
(5k + 3)^2 = 5(5k^2 + 6k + 1) + 4, \text{ or}
\]
\[
(5k + 4)^2 = 5(5k^2 + 8k + 3) + 1.
\]
In any of these cases, the division theorem implies that $5 \nmid a^2$.