Math 190: Fall 2014
Homework 7 Solutions
Due 5:00pm on Friday 12/5/2014

Problem 1: Let $I = [0, 1]$. Prove that there is no continuous bijection $f : I \to I^2$. (On the other hand, there is a continuous surjection $I \to I^2$.)

Solution: Suppose $f : I \to I^2$ is a continuous bijection. Then I is compact and I^2 is Hausdorff, so f is a homeomorphism. The restriction $f|_{I-\{1/2\}} : I - \{1/2\} \to I^2 - \{f(1/2)\}$ is also a homeomorphism. But $I - \{1/2\}$ is not connected and $I^2 - \{f(1/2)\}$ is connected.

Problem 2: Let $(X, <)$ be an ordered set in the order topology. Suppose that for all $a < b$ in X, the closed interval $[a, b]$ is compact. Prove that X has the least upper bound property: if A is any nonempty subset of X which has an upper bound, then A has a least upper bound.

Solution: Suppose X does not have the least upper bound property. Then there exists a nonempty subset $A \subset X$ which has an upper bound and no least upper bound. Let $a_0 \in A$ and let b_0 be an upper bound of A. The open sets $\{(a, \infty) : a \in A\}$ cover $\{x \in X : x$ is not an upper bound of $A\}$. On the other hand, since A has no least upper bound, the open sets $\{(b, \infty) : b$ is an upper bound of $A\}$ cover $\{x \in X : x$ is an upper bound of $A\}$. Therefore, we have an open cover \mathcal{U} of X (and hence of $[a_0, b_0]$) given by

$$\mathcal{U} := \{(-\infty, a) : a \in A\} \cup \{(b, \infty) : b$ is an upper bound of $A\}.$$

We claim that no finite subset of \mathcal{U} covers $[a_0, b_0]$. For if it did, then there would exist elements $a_1, \ldots, a_n \in A$ and upper bounds b_1, \ldots, b_m of A such that $[a_0, b_0] \subset (-\infty, a_1) \cup \cdots \cup (-\infty, a_n) \cup (b_1, \infty) \cup \cdots \cup (b_m, \infty)$. Letting $a = \max(a_1, \ldots, a_n)$ and $b = \min(b_1, \ldots, b_m)$, we have $[a_0, b_0] \subset (a, \infty) \cup (b, \infty)$. However, since b is an upper bound of A we know that $A \cap (b, \infty) = \emptyset$, so that $a_0 \not\in (a, \infty)$. Since b_0 is an upper bound of A we know that $a \in [a_0, b_0]$. But $a \not\in (b, \infty)$ (because $a \in A$) and $a \not\in (-\infty, a)$. This is a contradiction.

Problem 3: Let X be a compact Hausdorff space. Prove that X is normal: One-point sets in X are closed and for any disjoint closed sets $A, B \subset X$, there exist disjoint open sets $U, V \subset X$ such that $A \subset U$ and $B \subset V$.

Solution: One-point sets in X are closed because X is Hausdorff. Let A and B be disjoint closed subsets of X. For any $a \in A$, we proved in class that we can find neighborhoods U_a of a and V_a of B such that $U_a \cap V_a = \emptyset$. Then $\{U_a : a \in A\}$ is an open cover of A. Since X is compact and A is closed, A is also compact. So there exist $a_1, \ldots, a_n \in A$ such that $A \subset U := U_{a_1} \cup \cdots \cup U_{a_n}$. Then $V := V_{a_1} \cap \cdots \cap V_{a_n}$ is a neighborhood of B and $U \cap V = \emptyset$.

Problem 4: (Exercise 28.1 in Munkres) Prove that $[0, 1]$ is not limit point compact as a subspace of \mathbb{R}_d.

1
Solution: Consider the infinite set \(A = \left\{ 1 - \frac{1}{n} : n = 1, 2, \ldots \right\} \). We claim that \(A \) has no limit point. Indeed, \(0 \) is not a limit point of \(A \) because \([0,1/2) \) is an open neighborhood of \(0 \) which intersects no point of \(A \). For \(0 < x < 1 \), \(x \) is not a limit point of \(A \) because \(\left(\frac{x-1}{n}, \frac{x}{n+1} \right) \) is an open neighborhood of \(x \) which intersects no point in \(A \) other than \(x \) for an appropriate value of \(n \). Finally, \(1 \) is not a limit point of \(A \) because \(\{1\} \) is an open neighborhood of 1 which intersects no point of \(A \).

Problem 5: (Exercise 28.6 in Munkres) Let \((X, d)\) be a metric space and let \(f : X \to X \) be an isometry. For all \(x, y \in X \) we have \(d(x, y) = d(f(x), f(y)) \). Suppose \(X \) is compact. Prove that \(f \) is bijective and hence a homeomorphism. (Hint: If \(a \notin f(X) \), choose \(\epsilon > 0 \) such that \(B_d(a, \epsilon) \) does not intersect \(f(X) \). Let \(x_1 = a \) and let \(x_{n+1} = f(x_n) \) in general. Prove that \(d(x_m, x_n) \geq \epsilon \) for all \(m \neq n \).)

Solution: Since \(X \) is compact, we know that \(f(X) \subseteq X \) is compact. Since \(X \) is a metric space, and hence Hausdorff, we know that \(f(X) \) is closed in \(X \). If \(a \in X - f(X) \), we can find \(\epsilon > 0 \) such that \(B_d(a, \epsilon) \) does not intersect \(f(X) \). Define a sequence \((x_n)_{n \geq 1}\) by \(x_1 = a \) and \(x_{n+1} = f(x_n) \) for \(n \geq 1 \). We claim that \(d(x_m, x_n) \geq \epsilon \) for all \(m \neq n \). To see this, observe that \(x_n \in f(X) \) for \(n \geq 2 \), so that \(d(x_1, x_n) \geq \epsilon \) for all \(n \geq 2 \). Since \(f \) is an isometry, we have that \(d(x_k, x_{n+k}) = d(x_1, x_n) \) for all positive integers \(k \) and \(n \). The claim follows and we conclude that \((x_n)_{n \geq 1}\) has no convergent subsequence. But \(X \) is a compact metric space, and hence sequentially compact. This is a contradiction.

Problem 6: Are continuous images of limit point compact spaces necessarily limit point compact? Are closed subsets of limit point compact spaces necessarily limit point compact?

Solution: The first answer is no. Let \(Y = \{a, b\} \) be a two-point set with the indiscrete topology and endow the space \(X := Y \times \mathbb{Z}_{>0} \) with the product topology. We saw in class that \(X \) is limit point compact. However, the map \(f : X \to \mathbb{Z}_{>0} \) given by \(f(a, n) = f(b, n) = n \) is a continuous surjection and \(\mathbb{Z}_{>0} \) is not limit point compact (indeed, \(\mathbb{Z}_{>0} \) itself is an infinite subset without a limit point). The second answer is yes. Let \(X \) be a limit point compact and let \(Y \subseteq X \) be closed. If \(A \subseteq Y \) is infinite, then \(A \) has a limit point in \(X \), say \(x \). But \(x \) is also a limit point of \(Y \) in \(X \), and \(Y \) contains all of its limit points (being closed). This means \(x \in Y \), so that \(Y \) is limit point compact.

Problem 7: Let \(X \) be a locally compact space and let \(f : X \to Y \) be a continuous surjection. Is \(Y \) necessarily locally compact?

Solution: No. Let \(\mathbb{Q}_d \) denote the set \(\mathbb{Q} \) of rational numbers, endowed with the discrete topology. Then the identity function \(i : \mathbb{Q}_d \to \mathbb{Q} \) is a continuous surjection (where we give the codomain the standard topology). \(\mathbb{Q}_d \) is discrete, and hence locally compact. However, \(\mathbb{Q} \) is not locally compact.

Problem 8: (Exercise 29.6 in Munkres) Prove that the one-point compactification of \(\mathbb{R} \) is homeomorphic to the circle \(S^1 \).
Solution: We use the characterization of the one-point compactification given in Munkres. Let $N = (0, 1) \in S^1$ denote the “north pole”. Then $S^1 - \{N\}$ (in the subspace topology inherited from S^1) is homeomorphic to \mathbb{R} and S^1 is compact. By the uniqueness of the one-point compactification, this forces S^1 to be the one-point compactification of \mathbb{R}.

Problem 9: Let M_1 and M_2 denote two copies of the Möbius band. Let \sim denote the equivalence relation on $M_1 \amalg M_2$ which identifies a point on the boundary circle of M_1 with the corresponding point on the boundary circle M_2. Prove that the quotient space $(M_1 \amalg M_2)/\sim$ is homeomorphic to the Klein bottle K.

Solution: We can identify K with the quotient I^2/\sim, where $(x, 0) \sim (x, 1)$ for $0 \leq x \leq 1$ and $(0, y) \sim (1, 1 - y)$ for $0 \leq y \leq 1$. We define two subspaces A_1 and A_2 of I^2 by
\[
A_1 := \{(x, y) \in I^2 : 1 \leq x + 2y \leq 2\},
\]
\[
A_2 := \{(x, y) \in I^2 : x + 2y \leq 1 \text{ or } 2 \leq x + 2y\}.
\]
Then A_1 and A_2 are two closed subspaces of I^2 satisfying $A_1 \cup A_2 = I^2$. Moreover, we have that A_1 and A_2 are saturated with respect to \sim in the sense that if $(x, y) \sim (x', y')$ and $(x, y) \in A_i$ (for $i = 1, 2$), then $(x', y') \in A_i$. Therefore, we can consider \sim as an equivalence relation on either A_1 or A_2. We have that A_1/\sim and A_2/\sim are both homeomorphic to the Möbius band. The quotient of the intersection $(A_1 \cap A_2)/\sim$ is homeomorphic to the circle, and forms the boundaries of the Möbius bands A_1/\sim and A_2/\sim.