Problem 1: Let X be a set, let \mathcal{B} be a basis for a topology on X, and let \mathcal{T} be the topology generated by \mathcal{B}. Prove that \mathcal{T} equals the intersection of all topologies on X containing \mathcal{B}.

Problem 2: Consider the following five topologies on \mathbb{R}:

- \mathcal{T}_1 = the standard topology,
- \mathcal{T}_2 = the topology \mathbb{R}_K,
- \mathcal{T}_3 = the finite complement topology,
- \mathcal{T}_4 = the upper limit topology, having all sets $(a, b]$ as a basis,
- \mathcal{T}_5 = the topology having all sets $(-\infty, a]$ as a basis.

Determine, for each of these topologies, which of the others it contains.

Problem 3: We proved in class that the collection of rational open intervals $\{(a, b) : a, b \in \mathbb{Q}\}$ is a basis for the standard topology on \mathbb{R}. Is the set of rational half-open intervals $\{[a, b) : a, b \in \mathbb{Q}\}$ a basis for the lower limit topology \mathbb{R}_ℓ on \mathbb{R}?

Problem 4: Let S_Ω be the minimal uncountable well ordered set.

1. Prove that S_Ω does not have a largest element.
2. Prove that for any $\alpha \in S_\Omega$, the set $\{x \in S_\Omega : x > \alpha\}$ is uncountable.
3. Let X_0 be the set of all elements of S_Ω which do not have an immediate predecessor. Prove that X_0 is uncountable. 1

Problem 5: Let X be a topological space and suppose $A \subset Y \subset X$. Give Y the subspace topology. Prove that the topology that A inherits as a subspace of X equals the topology that A inherits as a subspace of Y.

Problem 6: Give \mathbb{R} the standard topology and consider $Y = [-1, 1]$ as a subspace of \mathbb{R}. Which of the following five sets are open in Y? Which are open in \mathbb{R}?

- $A = \{x : \frac{1}{2} < x < 1\}$.
- $B = \{x : \frac{1}{2} < x \leq 1\}$.
- $C = \{x : \frac{1}{2} \leq x < 1\}$.
- $D = \{x : \frac{1}{2} \leq x \leq 1\}$.
- $E = \{x : 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_{>0}\}$.

Problem 7: Endow \mathbb{R}^n with the standard topology. Prove that this topology has a countable basis.

Problem 8: Let L be a straight line in the plane. Describe the topology that L inherits as a subspace of $\mathbb{R}_\ell \times \mathbb{R}$ and the topology that L inherits as a subspace of \mathbb{R}_ℓ.

1If X is an ordered set and $x \in X$, an immediate predecessor of x is an element $y \in X$ such that $y < x$ and $(x, y) = \emptyset$. 1
$\mathbb{R}_\ell \times \mathbb{R}_\ell$. In each case it is a familiar topology. (Hint: Your answer may depend on the slope of L.)

Problem 9: Let $I = [0, 1]$ and compare the following three topologies on $I^2 = I \times I$.

- T_1 = the product topology on $I \times I$.
- T_2 = the dictionary order topology on $I \times I$.
- T_3 = the subspace topology on $I \times I$ inherited from the dictionary order topology on $\mathbb{R} \times \mathbb{R}$.
