Coordinates and Change of Basis

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be an ordered basis for the n-dimensional vector space V.

If v is any vector in V, then there is a unique coordinate vector $[v]_B = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ in \mathbb{R}^n such that $v = x_1 b_1 + \cdots + x_n b_n = [b_1, \ldots, b_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \mathcal{B}[v]_B$.

If $\mathcal{D} = \{d_1, \ldots, d_n\}$ is another ordered basis for V, then there are unique scalars P_{ij} such that $d_j = \sum_{i=1}^{n} b_i P_{ij}$, for $1 \leq j \leq n$. In other words,

$$[d_1, \ldots, d_n] = [b_1, \ldots, b_n] \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix}.$$

Thus $\mathcal{D} = \mathcal{B} P$, where P is the matrix (P_{ij}).

Let $[v]_D = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$. Then $v = y_1 d_1 + \cdots + y_n d_n = [d_1, \ldots, d_n] \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \mathcal{D}[v]_D$.

Since v is also equal to $\mathcal{B}[v]_B$, we have $\mathcal{D}[v]_D = \mathcal{B}[v]_B$, and since $\mathcal{D} = \mathcal{B} P$, it follows that $\mathcal{B} P [v]_D = \mathcal{B}[v]_B$.

Since \mathcal{B} is a basis for V, v is uniquely represented as a linear combination of elements of \mathcal{B}. This means that

$$[v]_B = P [v]_D.$$

Similarly,

$$[v]_D = P^{-1} [v]_B.$$

P is called the transition matrix from the ordered basis \mathcal{D} to the ordered basis \mathcal{B}.

Note: In the notation of **Proposition and definition 2.6.18** on page 217 of your book,

$$P = [P_{\mathcal{D} \rightarrow \mathcal{B}}].$$

It’s also worth observing that

$$P^{-1} = [P_{\mathcal{D} \rightarrow \mathcal{B}}]^{-1} = [P_{\mathcal{B} \rightarrow \mathcal{D}}].$$