Transition Matrix Exercises

1. Recall the double-angle trigonometric identities.

\[\cos^2(x) - \sin^2(x) = \cos(2x). \]
\[2 \sin(x) \cos(x) = \sin(2x). \]

(a) Show that \(S = \{\sin^2(x), \cos^2(x), \sin(x) \cos(x)\} \) and \(T = \{1, \sin(2x), \cos(2x)\} \) span the same 3-dimensional subspace of \(C[0, \pi] = \{f : [0, \pi] \to \mathbb{R} \mid f \text{ is continuous}\} \).

(b) Find the transition matrix from the ordered basis \(S \) to the ordered basis \(T \).

(c) Use the transition matrix to express \(a \sin^2(x) + b \cos^2(x) \) as a linear combination of 1, \(\sin(2x) \) and \(\cos(2x) \).

2. Recall that the hyperbolic cosine and hyperbolic sine functions are defined as follows.

\[\cosh(x) = \frac{e^x + e^{-x}}{2}, \]
\[\sinh(x) = \frac{e^x - e^{-x}}{2}. \]

(a) Show that \(E = \{e^x, e^{-x}\} \) and \(H = \{\cosh(x), \sinh(x)\} \) span the same 2-dimensional subspace of \(C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\} \).

(b) Find the transition matrix from the ordered basis \(E \) to the ordered basis \(H \).

(c) Use the transition matrix to express \(ce^x + de^{-x} \) as a linear combination of \(\sinh(x) \) and \(\cosh(x) \).

3. Using the definition of the hyperbolic cosine function and the hyperbolic sine function, it is a straightforward computation to verify the following identities.

\[\cosh^2(x) - \sinh^2(x) = 1. \]
\[\cosh^2(x) + \sinh^2(x) = \cosh(2x). \]
\[2 \cosh(x) \sinh(x) = \sinh(2x). \]

(a) Show that \(S_h = \{\cosh^2(x), \sinh^2(x), \cosh(x) \sinh(x)\} \) and \(T_h = \{1, \cosh(2x), \sinh(2x)\} \) span the same 3-dimensional subspace of \(C(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\} \).

(b) Find the transition matrix from the ordered basis \(S_h \) to the ordered basis \(T_h \).

(c) Use the transition matrix to express \(a \cosh^2(x) + b \sinh^2(x) \) as a linear combination of 1, \(\cosh(2x) \) and \(\sinh(2x) \).
1. (b) $P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$.

(c) $a \sin^2(x) + b \cos^2(x) = \frac{1}{2}(a + b) + \frac{1}{2}(-a + b) \cos(2x)$.

2. (b) $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

(c) $ce^x + de^x = (c + d) \cosh(x) + (c - d) \sinh(x)$.

3. (b) $P = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$.

(c) $a \cosh^2(x) + b \sinh^2(x) = \frac{1}{2}(a - b) + \frac{1}{2}(a + b) \cosh(2x)$.