Math 100b Winter 2010 Homework 5

Due 2/19/09 in class, or by 5pm in HW box on 6th floor of AP&M

Reading

All references will be to Beachy and Blair, 3rd edition.

Read 9.1-9.3.

Assigned Problems

Write up neat solutions to these problems.

Section 5.4: 2, 4.
Section 9.1: 1, 13, 14.

Additional Problems

Before the problems, we discuss some setup. Let \(d \) be an integer with \(d \neq 0, d \neq 1 \) and such that \(d \) is squarefree (not divisible by the square of a prime integer.)

Define \(R = \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d}\} \subseteq \mathbb{C} \). You should verify for yourself that \(R \) is a subring of \(\mathbb{C} \). Note that if \(d \) is positive, then \(R \) is contained in \(\mathbb{R} \), but if \(d \) is negative then the elements of \(R \) are generally complex. The rings \(R \) have many applications in number theory.

Fix \(d \), and consider the ring \(R = \mathbb{Z}[\sqrt{d}] \). If \(r = a + b\sqrt{d} \in R \), we define the norm function \(\delta(r) = a^2 - db^2 \); note that \(\delta(r) \) is always an integer. If \(d \) is negative, \(\delta(r) \) is the square of the complex norm of \(r \); but there is no such description if \(d \) is positive.

1. Let \(R = \mathbb{Z}[\sqrt{d}] \) as above.

 (a). Prove that the norm function \(\delta \) is multiplicative: for all \(s, t \in R \), \(\delta(st) = \delta(s)\delta(t) \).

 (b). Prove that \(s \in R \) is a unit in \(R \) if and only if \(\delta(s) = \pm 1 \). (Hint: for the direction \(\delta(s) = \pm 1 \) implies \(s \) is a unit, if \(s = a + b\sqrt{d} \) consider \(t = a - b\sqrt{d} \). Using this, prove that if \(d \leq -2 \), then the only units of \(\mathbb{Z}[\sqrt{d}] \) are \(\pm 1 \).

 (c). Prove that if \(s \in R \) and \(\delta(s) \) is a prime number in \(\mathbb{Z} \), then \(s \) is an irreducible element of \(R \).
Remark. The rings $R[\sqrt{d}]$ with $d \geq 2$ have infinitely many units, in contrast to the result of part (b) for negative d. You saw an example of this in exercises 9.1 13, 14 above.

2. Take $d = -2$, so that $R = \mathbb{Z}[-\sqrt{2}]$. Prove that R is a Euclidean domain with respect to the norm function $\delta(a + b\sqrt{-2}) = a^2 + 2b^2$ defined above.

(Hint: follow carefully the proof we gave (or the book gives) that the Gaussian integers $\mathbb{Z}[\sqrt{-1}]$ is a Euclidean domain.)

Remark: you now know that $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain with respect to the norm function δ defined above, for $d = -1, -2$. Actually the rings $\mathbb{Z}[\sqrt{d}]$ are only Euclidean domains for a relatively few small values of d.

3. Prove that $R = \mathbb{Z}[\sqrt{-6}]$ is not a UFD. (Hint: See Example 9.2.1 in the text for a similar example. Consider the two factorizations $-6 = (-2)(3) = -\sqrt{6}\sqrt{6},$ and prove that these are two essentially different factorizations into irreducibles, violating the definition of a UFD. To understand what elements are associates of each other in this ring, remember problem 1(b).)

4. Consider $R = \mathbb{Z}[\sqrt{2}]$. Show that the field of fractions $Q(R)$ is isomorphic to $\mathbb{Q}[\sqrt{2}] = \{p + q\sqrt{2} | p, q \in \mathbb{Q}\}$.

(Hint. Define a homomorphism $\phi : Q(R) \to \mathbb{Q}[\sqrt{2}]$ by the formula $[x, y] \mapsto xy^{-1}$, where $[x, y]$ is an arbitrary element of $Q(R)$ (so $x, y \in R$ and $y \neq 0$) in the bracket notation we used for elements of $Q(R)$. You must show that ϕ is well-defined! So you need to explain why xy^{-1} is independent of the choice of representative $[x, y]$ of the equivalence class; also, why is xy^{-1} an element of $\mathbb{Q}[\sqrt{2}]$? Once you have shown that ϕ is well-defined, show that ϕ is a homomorphism of rings, and a bijection.)