Math 200c Spring 2015 Homework 1

Due 4/10/2015 in class or under Rob Won’s office door by 3pm

Reading assignment: Read Chapters 1-2 of Atiyah-Macdonald and begin to read Chapter 3. We have covered a good portion of the material in Chapters 1-2 in previous quarters, especially Chapter 2; if you are new to the course you will want to read Chapter 2 more carefully. I will type out all exercises below, even if they come from Atiyah-Macdonald. All rings R are commutative with 1 and you may freely assume that R is not the zero ring to avoid trivialities.

Assigned problems (all to be turned in).

1. A ring R is *Boolean* if $x^2 = x$ for all $x \in R$.

 (a) For every prime ideal P of a Boolean ring R, $R/P \cong \mathbb{F}_2$, where \mathbb{F}_2 is the field with two elements.

 (b) Every finitely generated ideal of a Boolean ring R is principal.

 (c) R is Boolean if and only if it is isomorphic to a subring of some direct product of rings $\prod_{\alpha \in A} \mathbb{F}_2$ over some index set A.

2. Let R be a ring. Consider the polynomial ring $R[x]$. Let $f = a_0 + a_1 x + \cdots + a_n x^n \in R[x]$. Let N be the nilradical (= prime radical) of R.

 (a) Prove that $f \in R[x]$ is nilpotent if and only $a_0, a_1, \ldots, a_n \in N$.

 (b) Prove that $f \in R[x]$ is a unit if and only if a_0 is a unit in R and $a_1, \ldots, a_n \in N$. (Hint: a sum of a unit and a nilpotent element in a ring is a unit, by a 200a exercise; assume this result. Note that if f is a unit, its image in $(R/P)[x]$ is also a unit for every prime ideal P of R.)

 (c) The prime radical and Jacobson radical of $R[x]$ are equal, and both equal to $N[x]$, the set of polynomials with all of their coefficients in N.

1
3. Let R be a (nonzero) ring and let $R[[x]]$ be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in R. In the fall you proved in an exercise that f is a unit in $R[[x]]$ if and only if a_0 is a unit in R; if you are new to the course you should prove this, but don’t write it up.

(a) Prove that if f is nilpotent, then a_n is nilpotent in R for all $n \geq 0$.

(b) If R is noetherian, show that f is nilpotent if and only if a_n is nilpotent in R for all $n \geq 0$.

(c) Prove that f is in the Jacobson radical of $R[[x]]$ if and only if a_0 is in the Jacobson radical of R. Conclude that the prime radical and Jacobson radical of $R[[x]]$ are never the same.

4. In a ring R, let Σ be the set of all ideals in which every element is a zerodivisor (recall that x is a zerodivisor if there is $y \neq 0$ such that $xy = 0$.) Show that the set Σ has maximal elements under inclusion and that every maximal element is a prime ideal. Conclude that the set of zerodivisors of R is a union of prime ideals. (Remark: we will do better later and show that in a noetherian ring R the set of zerodivisors is a union of finitely many primes called the associated primes of the ring.)

5. Let R be a ring, and put the Zariski topology on $X = \text{Spec } R$. For any $f \in R$, define $X_f = V(f)^c = X \setminus V(f)$, i.e. the complement in X of the closed set $V(f)$, the set of prime ideals containing (f). The sets X_f are open, and they are called principal open subsets of X. Prove the following statements.

(a) The sets $\{X_f | f \in R\}$ form a basis for the Zariski topology. In other words, every open set in X is a union of such principal open subsets.

(b) $X_f \cap X_g = X_{fg}$.

(c) $X_f = \emptyset$ if and only if f is nilpotent.

(d) $X_f = X$ if and only if f is a unit.

(e) $X_f = X_g$ if and only if the ideals (f) and (g) have the same radical.

(f) X is quasi-compact (this means that every open covering of X has a finite subcover. This property is generally just called compact in topology). (Hint: show it is enough to consider a cover by a family of principal open sets X_{f_α}. Show that the f_α generate the unit ideal, and so finitely many of them generate the unit ideal.)

6. Let $\phi : A \to B$ be a ring homomorphism. Let $X = \text{Spec } A$ and $Y = \text{Spec } B$ with their Zariski topologies. If $Q \in Y$, then $\phi^{-1}(Q) \in X$. This gives a map $\phi^* : Y \to X$ defined by $Q \mapsto \phi^{-1}(Q)$. Prove the following:
(a) If \(f \in A \) then \((\phi^*)^{-1}(X_f) = Y_{\phi(f)}\). Hence \(\phi^* \) is continuous.

(b) If \(\phi \) is surjective, then \(\phi^* \) is a homeomorphism of \(Y \) onto the closed subset \(V(\ker \phi) \) of \(X \) (with the subspace topology).

(c) If \(\phi \) is injective, then \(\phi^*(Y) \) is dense in \(X \).

(d) Let \(A \) be a ring with precisely two prime ideals \(0 \subseteq m \) (for example, \(F[[x]] \) where \(F \) is a field is such a ring). In particular \(A \) is a domain and we let \(K \) be its field of fractions. Let \(B = (A/m) \times K \) and define \(\phi : A \to B \) by \(\phi(x) = (x + m, x) \). Show that \(\phi^* \) is bijective but not a homeomorphism.