Math 200c Spring 2015 Homework 2

Due 4/24/2015 in class or under Rob Won’s office door by 3pm

Reading assignment: Read Chapters 3-5 of Atiyah-Macdonald.

Assigned problems (all to be turned in).

1. Let X be a topological space. Recall that a subset Y of X is then a topological space with the **subspace topology** if we declare the closed sets in Y to be exactly those sets of the form $(Y \cap Z)$ where Z is closed in X. Recall also that a map $f : X \to W$ of topological spaces is **continuous** if for every closed subset Z of W, $f^{-1}(Z)$ is closed in X. A **homeomorphism** is a continuous map which is bijective and such that the inverse map is also continuous.

 Let R be a ring and S a multiplicative system in R. Consider the ring homomorphism $\phi : R \to S^{-1}R$ given by $r \mapsto r/1$, and the associated map of spectra $\phi^* : \text{Spec } S^{-1}R \to \text{Spec } R$ given by $\phi^*(Q) = \phi^{-1}(Q)$.

 (a). Let Z be the image of ϕ^*, with the topology it gets as a subspace of $\text{Spec } R$. Show that ϕ^* induces a homeomorphism from $\text{Spec } S^{-1}R$ to Z.

 (b). In case $S = R \setminus P$ for some prime ideal P, show that $R_P = \text{Spec } S^{-1}R$ is homeomorphic to the subset Z of $\text{Spec } R$ consisting of all primes Q contained in P. Show that Z is also equal to the intersection of all open subsets U of $\text{Spec } R$ such that $P \in U$. (This underlies the intuition that geometrically $\text{Spec } S^{-1}R$ is telling us about "local" behavior near the point P.)

2. (a). A ring R is **reduced** if its nilradical is 0. Show that being reduced is a local property: R is reduced if and only if the localization R_P is reduced for all prime ideals P of R.

 (b). Show that being a domain is not a local property. More specifically, show that if R is a domain then R_P is a domain for all prime ideals P of R, but that the converse need not hold.

3. (a). Let R be a ring and S a multiplicative system. Show that if J_1 and J_2 are ideals of $S^{-1}R$ with $J_1 \subseteq J_2$, then $J_1^c \subseteq J_2^c$. Using this, prove that if R is either noetherian or artinian, then the localized ring RS^{-1} has the same property.
(b). Suppose that $f_1, \ldots, f_m \in R$ are elements which generate the unit ideal, i.e. such that $(f_1, \ldots, f_m) = R$. Prove that if R_{f_i} is noetherian for all $1 \leq i \leq m$, then R is noetherian. (As always, R_f means the localization of R at the multiplicative system $\{1, f, f^2, \ldots, \}$.)

4. (a). Let S be a multiplicative system of a ring R. Suppose that I is an ideal of R such that $I \cap S = \emptyset$. Prove that the collection of all ideals J such that $I \subseteq J$ and $J \cap S = \emptyset$ has a maximal element, and that any such maximal element is a prime ideal.

(b). Let R be a nonzero ring and let Σ be the set of all multiplicatively closed subsets S of R such that $0 \not\in S$. Show that every $S \in \Sigma$ is contained in a maximal element of Σ and that $T \in \Sigma$ is maximal if and only if $T = R \setminus P$ for some minimal prime ideal P of R.

(c). Let R be a ring and let D be the set of zerodivisors of R. Using part (b), prove that every minimal prime P of R is contained in D.

5. Many different multiplicative systems can lead to essentially the same localization, and this problem explores this phenomenon. Let $S \subseteq T$ be multiplicatively closed subsets of a ring R. Let $\phi : S^{-1}R \to T^{-1}R$ be defined by $a/s \mapsto a/s$; it is easy to see this is a ring homomorphism. Prove that the following are equivalent:

(a) ϕ is bijective.
(b) For each $t \in T$, $t/1$ is a unit in $S^{-1}R$.
(c) For each $t \in T$ there exists $x \in R$ such that $xt \in S$.
(d) Every prime ideal which meets T also meets S.

(Hint: problem 4(a) can be used to prove that (d) implies (c).)