Dear Mr. Chung (1909 - 12)

Congratulations for your capture! I hope you will know freedom under the gentle tutelage of your lion, but remember that a captured plane is no longer a subject but an object.

Dear Fan,

Congratulations for having fulfilled the aim of BonLia! I wish you happiness and many joint papers (+ 3… if you want any)

Kind regards and lots of Luck to both of you all

E.O

I expect to be in Japan in 10 days and in the US early in February will phone as soon as I get there. It is not yet clear when the US – Hungary meeting will take place.

Let $a_1 < a_2 < \ldots$ be an infinite sequence of integers. Denote by $f(n)$ the number of solutions of $n = a_1 + a_2$. An old question of Turán and myself stated that if $f(n) > 0$ for all $n > m$, then $\lim_{n \to \infty} n f(n) = 0$. [Note: 'Turán' is a surname, likely referring to Paul Turán, a Hungarian mathematician.]

In my and Turán's thoughts about problems like: Assume $f(n) < C$ is it then true that for infinitely many n, $f(n) = 0$ and $f(n) = 1$ both occur infinitely often? Other values of $f(n)$ certainly do not have to occur infinitely often.
Also: Assume \(f(m) = 0 \) and let \(A \) be the set of integers for which \(f(m) = 0 \) and \(A' \) is the set of integers for which \(f(m) = 1 \). Is it true that \(A \) is always contained in the union of finitely many sets \(A' \)? Is it even true that \(A \) is a Galois set and \(A \) differs from \(A' \) by only a finite number of elements? A later *

I am old, stupid by convention are only the former, and we had no time to look at these problems carefully. Get a pleasurable if the problems are trivial or false.

Regards, au revoir

E.P.

Congratulations and best regards

Andrea Sancho

Trivial solution! Congratulations.

Vera protolot

Greetings from Madras. We had a nice conference. Missed you. You must come for the next conference. Regards, Andre