NOTES

EDITED BY DENNIS DETURCK, DAVID J. HALLENBECK, AND RODICA SIMION

A Note on Finding a Strict Saddlepoint

DANIEL BIENSTOCK* FAN CHUNG* MICHAEL L. FREDMAN*
ALEJANDRO A. SCHÄFFER† PETER W. SHOR† SUBHASH SURI*
*Bellcore, Morristown, NJ 07960
†AT & T Bell Laboratories, Murray Hill, NJ 07974
‡On leave from Department of Computer Science, Rice University

Given an $m \times n$ matrix A, where $m \geq n$, a (strict) saddlepoint (SP) of A is an entry that is (strictly) maximum in its row and (strictly) minimum in its column. Saddlepoints arise in the theory of two-person zero-sum games. Recently, Llewellyn et al. [2] showed that finding a non-strict SP requires querying all mn entries of the matrix in the worst case, while a strict SP can be found by querying just $O((m/n)n^{\log_2 3})$ entries. Assuming that querying an entry of the matrix takes constant time, their algorithm finds a strict SP in time $O((m/n)n^{\log_2 3})$. The purpose of this note is to describe an algorithm that finds a strict SP of A in time $O(m \log n)$, with just $O(m)$ queries of the entries of A.

For simplicity, we assume that A is a square matrix; a rectangular matrix of size $m \times n$ is handled by dividing it into $[m/n]$ matrices of size $n \times n$, as in [2]. The following observation is from [2].

Lemma 1. Given two entries of A, we can eliminate one of them as a possible candidate for a strict SP by querying one more entries of A and doing a constant amount of extra computation.

It follows from this lemma that a matrix can have at most one strict SP. Let H be a collection of n triples of the form $(row, column, value)$ satisfying the following properties:

P1. H has at most one entry from each row or column of A.
P2. Any strict saddlepoint of A lies in a row and column represented in H.

Lemma 2. If a and b are, respectively, the minimum and maximum values of entries in H, then any strict saddle point has a value c, $a \leq c \leq b$, with equality only if it is a member of H.

Proof. A strict saddlepoint must either be the representative of H in its row or else exceed it. Similarly it must either be the representative of H in its column or else be less than it.

It follows immediately from Lemma 2 that:

Lemma 3. If A_{ij} is a minimum (maximum) element of H, then it is the only possible strict SP in column i (row j).

We initially set H to be $\{(i, i, A_{ij})|1 \leq i \leq n\}$. The following lemma essentially gives an algorithm for finding the strict saddlepoint of A, if it exists.

418
LEMMA 4. Let \((i, j, A_{ij})\) and \((k, l, A_{kl})\) be two distinct entries of \(H\) having minimum and maximum values, respectively. By querying \(A_{il}\) and doing a constant amount of extra computation, we can reduce the size of \(H\) by one, while preserving properties P1 and P2.

Proof. By property P1, \(i \neq k\) and \(j \neq l\). We say a row or column is remaining if it has a representative in \(H\). We divide the analysis into three cases depending on the value of \(A_{ij}\).

Case 1. \(A_{il} < A_{ij} \leq A_{kl}\). Any strict saddlepoint in column \(l\) is no larger than \(A_{il}\). However, \(A_{il} < A_{ij}\), so by Lemma 2 column \(l\) cannot contain a strict SP, and we can eliminate this column entirely. By Lemma 3, the only possible strict SP in row \(k\) is \(A_{kl}\), which we have already ruled out. Consequently, we can delete the entry \((k, l, A_{kl})\) from \(H\).

Case 2. \(A_{ij} \leq A_{kl} \leq A_{il}\). This case is symmetric to case 1; here we eliminate row \(i\) and column \(j\) and, consequently, delete the entry \((i, j, A_{ij})\) from \(H\).

Case 3. \(A_{ij} < A_{il} < A_{kl}\). By Lemma 3, the only possible strict saddlepoints in column \(j\) or row \(k\) are \(A_{ij}\) and \(A_{kl}\). The first inequality rules out \(A_{ij}\); the second rules out \(A_{kl}\). Hence, the column \(j\) and the row \(k\) can be eliminated. The row \(i\) and the column \(l\), however, cannot be eliminated yet. We, therefore, delete \((i, j, A_{ij})\) and \((k, l, A_{kl})\) from \(H\) but insert \((i, l, A_{il})\). This preserves the properties of \(H\) while decreasing its size by one.

This completes the proof.

Once we have eliminated all but one entry as a possible saddlepoint, then to test whether this last entry really is a saddlepoint, we make comparisons with all other entries in its row and column; this requires \(2n - 2\) additional queries. Finally, we can store \(H\) as a min-max heap so that the operations Delete-Min, Delete-Max, Find-Min, Find-Max and Insert can be performed in worst-case time \(O(\log n)\) [1]. This proves our main result.

THEOREM 5. Given an \(m \times n\) matrix \(A\), where \(m \geq n\), we can determine whether \(A\) has a strict saddlepoint, and report such an entry, by querying \(O(m)\) matrix entries and doing \(O(m \log n)\) additional computation.

REFERENCES

Circumscribed Circles

ROBERT OSSERMAN
Mathematics Department, Stanford University, Stanford, CA 94305

In a paper giving a new derivation of the four-vertex theorem [1], I stated without proof some elementary lemmas about circumscribed circles. The arguments needed are familiar to those who work in the field, but are not completely obvious. In rethinking those arguments, I noticed that the statements hold in far