ON THE RAMSEY NUMBERS $N(3, 3, ..., 3; 2)$

Fan Rong K. CHUNG

Department of Mathematics, University of Pennsylvania, Philadelphia, Pa. 19104, USA

Received 5 July 1972*

Abstract. The main results of this paper are $N(3, 3, 3, 3; 2) > 50$ and $f(k+1) \geq 3f(k) + f(k-2)$, where $f(k) = N(3, 3, ..., 3; 2) - 1$ for $k \geq 3$.

1. Introduction

The theorem of Ramsey says: Given integers $S_1, S_2, S_3, ..., S_k$, where $S_1, S_2, ..., S_k \geq 2$, there exists a minimum integer $N(S_1, S_2, ..., S_k; 2)$ such that the following property is valid for all $n \geq N(S_1, S_2, ..., S_k; 2)$. Let the edges of a complete graph of n vertices be colored in k colors, then there exists a subset of S_i vertices with all its interconnecting segments of the i^{th} color for some $i \leq k$.

Now, consider the case of $S_1 = S_2 = ... = S_k = 3$. Let

$$f(k) = N(3, 3, ..., 3; 2) - 1.$$

The problem reduces to the following: If the edges of K_n are colored in k colors and if $n > f(k)$, then there exists some triangle with all its sides in the same color. Find $f(k)$.

It is known [1] that $2^k \leq f(k) \leq [k! e]$. Particularly, $f(1) = 2, f(2) = 5, f(3) = 16$. Whitehead [3, 4] has proved $f(4) \geq 49$. It will be shown here that $f(k+1) \geq 3f(k) + f(k-2)$ for $k \geq 3$ and, in particular, $f(4) \geq 50$, thus $N(3, 3, 3, 3; 2) > 50$.

* Original version received 18 April 1972.
2. \(N(3, 3, 3, 3; 2) > 50 \)

Consider the symmetric \(16 \times 16\) matrix:

\[
T_3(x_0, x_1, x_2, x_3) =
\begin{align*}
&x_0 \\
&x_1 x_0 \\
&x_1 x_2 x_0 \\
&x_1 x_2 x_3 x_0 \\
&x_1 x_2 x_3 x_2 x_0 \\
&x_1 x_3 x_3 x_2 x_0 \\
&x_1 x_3 x_2 x_3 x_2 x_0 \\
&x_2 x_3 x_2 x_2 x_1 x_1 x_0 \\
&x_2 x_2 x_3 x_1 x_1 x_2 x_3 x_0 \\
&x_2 x_2 x_1 x_3 x_2 x_1 x_3 x_1 x_0 \\
&x_2 x_1 x_2 x_3 x_2 x_1 x_3 x_1 x_0 \\
&x_2 x_1 x_2 x_1 x_3 x_3 x_2 x_0 \\
&x_3 x_2 x_1 x_1 x_3 x_3 x_3 x_2 x_0 \\
&x_3 x_1 x_2 x_3 x_3 x_1 x_3 x_2 x_3 x_1 x_0 \\
&x_3 x_1 x_3 x_2 x_1 x_3 x_3 x_2 x_1 x_2 x_0 \\
&x_3 x_3 x_3 x_1 x_2 x_3 x_1 x_2 x_1 x_0 \\
&x_3 x_3 x_1 x_3 x_3 x_2 x_3 x_1 x_2 x_1 x_0
\end{align*}
\]

It is known \([2]\) that \(T_3(0,1,2,3)\) is the incidence matrix of one of the two non-isomorphic edge-coloring schemes of \(K_{16}\) without any one-color triangles.

Now construct the \(50 \times 50\) incidence matrix in the following way:

\[
T_4(0,1,2,3,4) =
\begin{array}{c|c|c|c|c|c}
A & & & & & \\
\hline
& & & & & \\
D & B & & & & \\
\hline
& & & & & \\
E & F & C & & & \\
\hline
11 & 22 & 33 & 3 & 0 & \\
11 & 22 & 33 & 3 & 4 & 0
\end{array}
\]

\[1\) Dr. G.J. Porter proved 2 independently in Univ. of Pennsylvania.\]
where \(A = T_3(0, 2, 3, 4) \),
\[B = T_3(0, 3, 1, 4) \],
\[C = T_3(0, 1, 2, 4) \],
\[D = T_3(3, 2, 1, 4) \],
\[E = T_3(2, 1, 3, 4) \],
\[F = T_3(1, 3, 2, 4) \].

If there are some one-color triangles with vertices \(i, j, k \), then \(t_{i,j} = t_{k,j} = t_{k,i} \). We may assume \(k > i > j \) without loss of generality.

Case 1: \(t_{i,j} = t_{k,j} = t_{k,i} = 4 \).

We notice that \(t_{m,n} = t_{m',n'} = 4 \) if \(m \equiv m' \) (mod 16), \(n \equiv n' \) (mod 16) for \(m, m', n, n' \leq 48 \). Hence we may pick \(i', j', k' \) such that \(i \equiv i', j \equiv j', k \equiv k' \) (mod 16) and \(i', j', k' \leq 16 \); then \(t_{i',j} = t_{k',j} = t_{k',i} = 4 \). This contradicts the fact that \(T_3 \) is the incidence matrix of a coloring without a one-color triangle. In case of \(k = 50, i = 49 \), we know that \(t_{50,49} = 4 \) and that \(t_{j,49}, t_{j,50} \) do not have value 4 for any \(j \neq 49, 50 \).

Case 2: \(t_{i,j} = t_{k,j} = t_{k,i} = 2 \).

(1) \(16 \geq j \geq 1, 16 \geq i \geq 1, t_{i,j} \) is in part \(A \).

(a) If \(t_{k,j} \) is in part \(A \), then \(t_{k,i} \) is in part \(A \). This contradicts the structure of \(T_3 \).

(b) If \(t_{k,j} \) is in part \(D \), then \(t_{k,i} \) is in part \(D \). We know that \(t_{i+16,j} = t_{i,j} = 2 \). Then \(t_{i+16,j} = t_{k,j} = t_{k,i} = 2 \). Impossible.

(c) If \(t_{k,j} \) is in part \(E \), then \(t_{k,i} \) is in part \(E \). But there is only one entry with value 2 in each row of \(E \). Contradiction.

(2) \(16 \geq j \geq 1, 32 \geq i \geq 17, t_{i,j} \) is in part \(D \).

(a) If \(t_{k,j} \) is in part \(D \), then \(t_{k,i} \) is in part \(B \). But there is no entry with value 2 in \(B \). This is impossible.

(b) If \(t_{k,j} \) is in part \(E \), then \(t_{k,i} \) is in part \(F \). It is known that only the entries on the diagonal are of value 2 in \(E \). Hence \(k = 32+j \).

We have \(t_{i,j} = t_{32+j,i} = t_{32+j,i} = 2 \). But \(t_{32+j,i} = 3 \) if \(t_{k,j} = 2 \). Contradiction.

(3) \(16 \geq j \geq 1, 50 \geq i \geq 33, t_{i,j} \) is in part \(E \). There is only one entry with value 2 in part \(E \). This is impossible.

(4) \(32 \geq j \geq 17, 32 \geq i \geq 17, t_{i,j} \) is in part \(B \). This is impossible because there is no entry with value 2 in \(B \).

(5) \(32 \geq j \geq 17, 48 \geq i \geq 33, t_{i,j} \) is in part \(F \).

(a) \(t_{k,j} \) is in part \(F \) and \(t_{k,i} \) is in part \(C \) and \(t_{k,i} = t_{k,i-16} = 2 \). Then \(t_{i,j}, t_{k,j}, t_{k,i-16} \) are all in \(F \) and all with value 2. This contradicts the structure of \(T_3 \).
(b) $k = 49$ or 50. In this case, $t_{k,i} = 3 \neq t_{i,j}$.

(6) $i = 49$, $32 \geq j \geq 17$, $k = 50$. Then $t_{50,49} = 4 \neq 2$. Impossible.

(7) $48 \geq j \geq 33$, $48 \geq i \geq 33$, $t_{i,j}$ is in part C. $t_{k,j}$, $t_{k,i}$ is in part C.

This contradicts the structure of T_3.

Case 3: $t_{i,j} = t_{k,j} = t_{k,i} = 1$. This is impossible. The proof is similar to case 2.

Case 4: $t_{i,j} = t_{k,j} = t_{k,i} = 3$. Similarly impossible.

Hence we prove that $T_4(0,1,2,3,4)$ is the incidence matrix of the coloring of K_{50} without a one-color triangle.

Thus, $f(4) \geq 50$, i.e., $N(3,3,3,3;2) > 50$.

3. $f(k + 1) \geq 3f(k) + f(k - 2)$

The result in Section 2 can be generalized to any $k \geq 4$.

Let $T_k(x_0, x_1, ..., x_k)$ be the incidence matrix of the coloring of the complete graph of n_k vertices without a one-color triangle in k colors.

Similarly, we construct $T_{k+1}(0,1,2, ..., k+1)$ as shown in Diagram 1.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>11 ...</td>
<td>22 ..</td>
<td>33 ...</td>
</tr>
<tr>
<td></td>
<td>::::</td>
<td>::::</td>
<td>::::</td>
</tr>
<tr>
<td>1</td>
<td>22 ...</td>
<td>33 ...</td>
<td></td>
</tr>
</tbody>
</table>

Diagram 1.

$A = T_k(0, 2, 3, 4, 5, ..., k+1)$, $B = T_k(0, 3, 1, 4, 5, ..., k+1)$,
$C = T_k(0, 1, 2, 4, 5, ..., k+1)$, $D = T_k(3, 2, 1, 4, 5, ..., k+1)$,
$E = T_k(2, 1, 3, 4, 5, ..., k+1)$, $F = T_k(1, 3, 2, 4, 5, ..., k+1)$,
$G = T_{k-2}(0, 4, 5, ..., k+1)$.

The proof that such a coloring has no one-color triangle is quite similar to the proof in Section 2. Hence we have $f(k+1) \geq 3f(k) + f(k - 2)$.
Acknowledgment

The author wishes to thank professor Herbert S. Wilf for his guidance and encouragement.

References