ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.

F.R.K. CHUNG — R.L. GRAHAM — N. PIPPENGER

INTRODUCTION

Let \mathcal{T}_n denote the class of all trees* with n edges and denote by $s(\mathcal{T}_n)$ the minimum number of edges a graph G can have which contains all $T \in \mathcal{T}_n$ as subgraphs. In a previous paper [2], two of the authors established the following bounds on $s(\mathcal{T}_n)$:

$$\frac{1}{2} n \log n < s(\mathcal{T}_n) < n^{1 + \frac{1}{\log \log n}}$$

where n is taken sufficiently large. In this note, we strengthen the upper bound on $s(\mathcal{T}_n)$ considerably. In addition we also consider the same problem in the case that G is restricted to be a tree, with $s_\tau(\mathcal{T}_n)$ denoting the corresponding minimum number of edges. Surprisingly, we show that $s_\tau(\mathcal{T}_n)$ does not grow exponentially in n, answering a question in [2]. It is annoying, however, that at present we cannot even show that $s_\tau(\mathcal{T}_n)$ must exceed $n^{2+\epsilon}$ for large n.

W-SUBTREES OF A TREE

Before establishing new bounds on \(s(\mathcal{T}_n) \) and \(s_\mathcal{F}(\mathcal{T}_n) \), we first require a result concerning the decomposition of trees.

Let \(W \) be a nonempty set of vertices of a tree \(T \). By a \(W \)-subtree of \(T \), we mean a subtree \(T' \) of \(T \) consisting of one of the components \(C \) formed from \(T \) by the removal of all the vertices of \(W \), except for those vertices of \(W \) adjacent to some vertex of \(C \) (and the edges joining them).

Example.

![Diagram of trees](image)

Fig. 1

As usual, we let \(\| G \| \) denote the number of edges of a graph \(G \).

Lemma. Let \(w \) be a nonnegative integer. Then if \(\alpha \) is sufficiently large, any tree \(T \) with at least \(\alpha + 1 \) edges has a subset of vertices \(W \) with \(|W| \leq w + 1 \) so that for some set \(\mathcal{C} \) of \(W \)-subtrees of \(T \) we have

\[
\alpha < \sum_{T' \in \mathcal{C}} \| T' \| \leq \left(1 + \left(\frac{2}{3} \right)^w \right) \alpha.
\]

Proof. For \(w = 0 \), this is a result in [2]. Assume \(w = 1 \). We know that if \(\alpha \) is large enough then for some vertex \(u \) there is a set \(\mathcal{C}(u) \) of \(\{u\} \)-subtrees of \(T \) such that
(3) \[\alpha < \sum_{T' \in \mathcal{E}(u)} \| T' \| \leq 2\alpha. \]

If
\[\sum_{T' \in \mathcal{E}(u)} \| T' \| \leq \frac{5}{3} \alpha, \]
then the lemma holds for \(w = 1 \). Hence, we may assume
\[\frac{5}{3} \alpha < \sum_{T' \in \mathcal{E}(u)} \| T' \| \leq 2\alpha. \]

Let \(T_1 \) be the subtree of \(T \) formed by taking the union of all \(T' \in \mathcal{E}(u) \). Again, for \(\alpha \) sufficiently large, there exists a vertex \(v \) of \(T_1 \) so that for some set \(\mathcal{E}(v) \) of \((v) \)-subtrees of \(T_1 \), we have
\[\frac{\alpha}{3} \sum_{T'' \in \mathcal{E}(v)} \| T'' \| \leq \frac{2\alpha}{3}. \]

Consider the set \(\mathcal{E}'(v) \) all of \(\{v\} \)-subtrees of \(T_1 \) which are not in \(\mathcal{E}(v) \). Then
\[\alpha < \sum_{T' \in \mathcal{E}'(v)} \| T' \| \leq \frac{5}{3} \alpha. \]

However, a \(\{v\} \)-subtree of \(T_1 \) is a \(\{u, v\} \)-subtree of \(T \). This proves the lemma for the case \(w = 1 \). The inductive proof of (2) for general \(w \) follows very similar lines and will not be given.

AN UPPER BOUND ON \(s(\mathcal{T}_n) \)

Theorem 1.

\[s(\mathcal{T}_n) = O(n \log n (\log \log n)^2). \]

Proof. For \(p \geq 0 \), let us define the graph \(G_{w, p} \) as follows. \(G_{w, 0} = K_{w+1} \), the complete graph on \(w + 1 \) vertices. For \(p > 0 \), \(G_{w, p} \) will denote the graph formed from \(K_{w+1} \) and two disjoint copies of \(G_{w, p-1} \), by placing an edge between each vertex of \(K_{w+1} \) and each vertex of each of the copies of \(G_{w, p-1} \) (see Figure 2).
Simple inductive arguments show that \(|G_{w,p}| = O(w2^p) \) and \(\|G_{w,p}\| = O(w^2p2^p) \) (where \(|G| \) denotes the number of vertices in \(G \)). It is also not difficult to see that \(G_{w,p} \) contains all trees with at most
\[
\left(\frac{2 + \left(\frac{2}{3} \right)^w}{1 + \left(\frac{2}{3} \right)^w} \right)^p
\]
edges. For \(p = 1 \), the expression is less than 2 and the claim is trivial. For \(p > 1 \), application of the preceding Lemma with
\[
\alpha = \frac{1}{1 + \left(\frac{2}{3} \right)^w} \left(\frac{2 + \left(\frac{2}{3} \right)^w}{1 + \left(\frac{2}{3} \right)^w} \right)^{p-1}
\]
guarantees a set \(W \) of \(w + 1 \) vertices (which may be assigned to the vertices of \(K_{w+1} \) in \(G_{w,p} \)) and a decomposition of the \(W \)-subtrees into two classes, each having at most
\[
\left(\frac{2 + \left(\frac{2}{3} \right)^w}{1 + \left(\frac{2}{3} \right)^w} \right)^{p-1}
\]
edges (which may be assigned to the two copies of \(G_{w,p-1} \) in \(G_{w,p} \)).
If we now choose \(q = \left\lfloor \frac{\log 2n}{\log 2} \right\rfloor \) and \(w = \left\lfloor \frac{\log q}{\log \frac{3}{2}} \right\rfloor \) we find that

\[\| G_{w,q} \| = O(n \log n (\log \log n)^2). \]

Furthermore, a simple calculation shows that

\[\left(\frac{2 + (\frac{2}{3})^w}{1 + (\frac{2}{3})^w} \right)^q \geq 2^q \left(1 - \frac{1}{2} \left(\frac{2}{3} \right)^w \right)^q \geq 2^{q-1} \geq n, \]

so that \(G_{w,q} \) contains as subgraphs all trees with at most \(n \) edges.\footnote{\hfill}\\

TREES CONTAINING ALL SMALL TREES

We next turn our attention to the case in which \(G \) is restricted to be a tree. As mentioned in the introduction, it was asked in [2] whether or not \(s_f(\mathcal{T}_n) \), the corresponding minimum number of edges in this case, must grow exponentially in \(n \). This is settled by Theorem 2.

Before presenting this result, we first list the values of \(s_f(n) \) for \(n \leq 7 \). We also show trees which produce these values (see Fig. 3). The corresponding proofs for these results are straightforward (using degree sequence considerations) and are omitted.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s_f(\mathcal{T}_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 1
Theorem 2.

\[s_{\varphi}(\mathcal{F}_n) \leq \frac{2\sqrt{2}}{n} \exp \frac{\log^2 n}{2 \log 2} \]

for \(n \) sufficiently large.
Proof. Let us consider a family of rooted trees $\tilde{G}(x)$ with a root at some vertex of degree 1 which contains as subgraphs all rooted trees on at most x edges which have a root at some vertex of degree 1. For $1 \leq k < n$, let $\tilde{G}\left(\frac{n-1}{k}\right)$ have as its root r_k. Form the graph $\tilde{G}(n)$ (as shown in Fig. 4) by identifying all the r_k as a single vertex r^* and adjoining a root r_n of degree 1 to r^*. We note that $\tilde{G}(x) = \tilde{G}(n)$ where n is the integral part of x.

\[
\begin{align*}
\tilde{G}(n) &= \tilde{G}\left(\frac{n-1}{1}\right), \\
&= \tilde{G}\left(\frac{n-1}{2}\right), \\
&= \tilde{G}\left(\frac{n-1}{3}\right), \\
&= \ldots
\end{align*}
\]

Fig. 4

It is easy to see that if \bar{f} satisfies

\[
(4) \quad \bar{f}(x) \geq \sum_{k=1}^{[x]} \bar{f}\left(\frac{x-1}{k}\right),
\]

for sufficiently large x then

\[
(5) \quad \| \tilde{G}(n) \| \leq \bar{f}(n).
\]
We claim that it will suffice to have \(\bar{f} \) satisfy

\[
(6) \quad \bar{f}(x) \geq \bar{f}(x - 1) + 2\bar{f}\left(\frac{x + 1}{2}\right)
\]

in order for (4) to hold. For (6) implies

\[
\begin{align*}
\bar{f}(x) & \geq \bar{f}(x - 1) + 2\bar{f}\left(\frac{x - 1}{2}\right) \\
& \geq \bar{f}(x - 1) + 2\bar{f}\left(\frac{x - 1}{2}\right) + 4\bar{f}\left(\frac{x - 3}{4}\right) \\
& \geq \bar{f}(x - 1) + 2\bar{f}\left(\frac{x - 1}{2}\right) + 4\bar{f}\left(\frac{x - 1}{4}\right) + 8\bar{f}\left(\frac{x + 7}{8}\right) \\
& \quad \vdots \\
& \geq \sum_{2^k < x} 2^{k-1}\bar{f}\left(\frac{x - 1}{2^k}\right) \geq \sum_{k=1}^{\lfloor x \rfloor} \bar{f}\left(\frac{x - 1}{k}\right).
\end{align*}
\]

A straightforward computation now shows that the choice

\[
\bar{f}(x) = e^{\frac{\log^2 x}{2 \log 2}}
\]

satisfies (6) for \(x \) sufficiently large.

Let \(G(x) \) be a graph as shown in Figure 5.

It is immediate that \(G(x) \) contains all \(T \in \mathcal{T}_n \) as subgraphs and we have

\[
\sigma_x(\mathcal{T}_n) \leq \| G(x) \| \leq \frac{2\sqrt{2}}{n} \cdot \exp\left(\frac{(\log n)^2}{2 \log 2}\right).
\]

This proves the theorem. \(\square \)

Let \(\sigma^*_x(\mathcal{T}_n) \) be the minimum number of edges a rooted tree can have which contains all rooted trees of \(n \) edges as subgraphs. Of course, the inequality

\[
\sigma_x(\mathcal{T}_n) \leq \sigma^*_x(\mathcal{T}_n)
\]

is immediate. In fact, we now show that if \(\sigma_x(\mathcal{T}_n) \) grows polynomially in \(n \), then so does \(\sigma^*_x(\mathcal{T}_n) \).
Theorem 3.

\[s_{\mathcal{T}}(\mathcal{T}_n) \leq s^*_{\mathcal{T}}(\mathcal{T}_n) \leq s_{\mathcal{T}}(\mathcal{T}_n) \cdot (s_{\mathcal{T}}(\mathcal{T}_n) + 1). \]

Proof. Let \(G_n \) be a tree with \(s_{\mathcal{T}}(\mathcal{T}_n) \) edges which contains all \(T \in \mathcal{T}_n \) as subgraphs. Let \(G_n(\nu), \ \nu \in G_n, \) be a rooted tree which has the same structure as \(G_n \) and which has \(\nu \) as its root. Now, form the rooted tree \(H_n \) (as shown in Fig. 6) by identifying all the roots \(\nu \) in \(G_n(\nu) \) for \(\nu \in G_n. \)

It is easily verified that \(H_n \) contains all rooted trees with \(n \) edges and satisfies

\[s^*_{\mathcal{T}}(\mathcal{T}_n) \leq \| H_n \| \leq s_{\mathcal{T}}(\mathcal{T}_n) (s_{\mathcal{T}}(\mathcal{T}_n) + 1). \]

This proves the theorem. \(\blacksquare \)
CONCLUDING REMARKS

As remarked earlier, the best known lower bound for $s(\mathcal{T}_n)$ is $\frac{1}{2} n \log n$ which is not too far from the upper bound of $O(n \log n (\log \log n)^2)$ of Theorem 1. Perhaps the lower bound is the correct order of magnitude. Unfortunately, the only lower bound presently known for $s_x(\mathcal{T}_n)$ is rather weak. By considering the possible locations of the vertices of degree 1 of the $T \in \mathcal{T}_n$, it can be argued that

$$s_x(\mathcal{T}_n) > cn^2$$

for some $c > 0$. It seems likely that

$$\frac{s_x(\mathcal{T}_n)}{n^k} \to \infty$$

for any fixed k.
REFERENCES

F. R. K. Chung — R. L. Graham
Bell Laboratories, Murray Hill, New Jersey.

N. Pippenger
IBM Thomas J. Watson Research Center, Yorktown Heights, New York.