Proof. We will construct a d-partite graph \tilde{H} as follows:

(i) \tilde{H} has vertex set $A_1 \cup A_2 \cup \cdots \cup A_{d+1}$ with $|A_i| = 2n/d$ for each i;
(ii) For each i, no $u, v \in A_i$ are adjacent;
(iii) The edges between A_i and $A_1 \cup A_2 \cup \cdots \cup A_{i-1}$ form a graph described in Claim 2.

It can be easily seen that \tilde{H} has at most $4n^2 \log \log n / \log n$ edges. It suffices to prove that any graph G with degree d can be embedded in \tilde{H}. A nice result of Hajnal and Szemerédi [6] states that any graph with degree at most d can be colored by $d+1$ colors in such a way that the sizes of the color classes differ by at most 1. Suppose G has color classes C_1, \ldots, C_{d+1}. We will then embed C_1 into A_1, C_2 into A_2, and so on, as guaranteed by Claim 2.

Claim 4. There exists a graph $F(n)$ with $Cn^2 \log \log n \log n$ edges which contains all graphs on n edges where C is an absolute constant.

Proof. We will construct the graph $F(n)$ as follows:

(i) The vertex set is the disjoint union of A and B where $|A| = 2n \log \log n / \log n$ and $|B| = 2n$.
(ii) Every vertex v in A is adjacent to all vertices in $V(F(n)) - \{v\}$.
(iii) The subgraph of $F(n)$ induced by B is the graph, as described in Claim 3, which has $4n^2 \log \log n / \log n$ edges and contains all graphs with $2n$ vertices and degree at most d.

It is easy to see that $F(n)$ has at most $10n^2 \log \log n / n^2$ edges. Let G be an arbitrary graph on n edges. G has at most $2n \log \log n / \log n$ vertices with degree more than $\log n / \log \log n$. These vertices will be embedded in A. The remaining part of the graph will then be embedded in B as guaranteed by Claim 3.

This completes the proof of Claim 4.

Remark. If instead of using the result of Hajnal and Szemerédi, we use the simple fact that a graph on n vertices and maximum degree d can be $2(d+1)$ colored so that each color class has size at most n/d, then the resulting bound will differ from the one presented by a constant factor.

4. Universal graphs for planar graphs

We will use the following theorem to give an upper bound of $n^{3/2}$ for the universal graphs which contain all planar graphs on n edges.

Separator Theorem (Lipton and Tarjan [6]). Let G be any planar graph with n vertices. The vertices of G can be partitioned into three sets, A, B, C such that no edge joins a vertex in B with a vertex in C, neither B and C contain more than $n/2$ vertices, and A contains no more than $2\sqrt{2n}/(1 - \sqrt{2/3})$ vertices.

Let $G(n)$ denote the graph constructed as shown in Fig. 1. The vertices of $G(n)$ can be partitioned into three parts, X, Y and Z where $|X|=$