Math 261
Midterm take home
Due: 1pm, Wednesday, May 12, 2010

You are only required to do three of the following four problems:

1. For two graphs $G = (V, E)$ and $H = (V', E')$, the box-product graph $G \square H$ denote the graph with vertex set $\{(u, v) : u \in V, v \in V'\}$ and edge set
 $\{(u, u'), (v, v') : (u = v \text{ and } \{u', v'\} \in E') \text{ or } (u' = v' \text{ and } \{u, v\} \in E)\}$. For the cycle C_n on n vertices, compute the number of spanning trees in $C_n \square C_n$. (Find a simple expression for your answer, if possible.)

2. In a connected graph G, we consider a subset of vertices, denoted by S. Suppose the induced subgraph on S is connected. The Green function G_S is defined to be the inverse of the Laplacian L_S. Recall that $L = I - D^{-1/2}AD^{-1/2}$. Now, we consider a cycle C_{n+1} with vertices $0, 1, \ldots, n$ and vertex j is adjacent to vertex $j+1$ for all j modulo $n+1$. Choose $S = \{1, 2, \ldots, n\}$. Show that for $x \leq y$,
 $$G_S(x, y) = \frac{2}{n+1} x(n+1-y).$$

3. For a connected induced subgraph S of a graph G and for a real $t \geq 0$, the Dirichlet heat kernel of S is defined by
 $$H_t = e^{-tL_S} = I - tL_S + \frac{t^2}{2!}L_S^2 + \ldots$$
 Show that
 $$G_S(x, y) = \int_0^\infty H_t(x, y) dt.$$

4. In a connected graph G, let Z denote the lazy random walk $Z = (I + P)/2$ where P is the transition probability matrix. For a seed s (as a probability distribution) and a jumping constant α, $0 < \alpha < 1$, the PageRank $p = pr_{\alpha, s}$ is defined to be the unique vector satisfies the following recurrence:
 $$p = \alpha s + (1-\alpha)pZ.$$
 For $\beta > 0$, we consider the α-Green function to be the inverse of $L_\beta = \beta I + L$. Namely,
 $$L_\beta G_\beta = G_\beta L_\beta = I.$$
 Show that
 $$pr_{\alpha, s} = \beta sD^{-1/2}G_\beta D^{1/2}$$
 where $\beta = 2\alpha/(1-\alpha)$.

1