We define the upper and lower integrals by Definition of integral here

\[
U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1}) \quad \text{and} \quad L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1});
\]

where \(m_i \) and \(M_i \) are infimum and supremum of \(f \) on the interval \([x_{i-1}, x_i]\).

Definition of integral We define the upper and lower integrals by

\[
\int_a^b f = \inf U(f, P), \quad \int_a^b f = \sup L(f, P),
\]

where the inf and sup are taken over all partitions of \([a, b]\). A bounded function is called integrable if upper and lower integrals coincide.

Theorem (a) The lower integral of \(f \) is always less or equal than the upper integral.

(b) (Archimedes-Riemann) A bounded function \(f : [a, b] \to \mathbb{R} \) is integrable if and only if there exists a sequence of partitions \((P_n) \) such that

\[
\lim_{n \to \infty} |U(f, P_n) - L(f, P_n)| = 0.
\]

Continuous, integrable and differentiable functions Recall that \(f : [a, b] \to \mathbb{R} \) is called continuous at \(x_0 \) if for every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that \(|f(x) - f(x_0)| < \epsilon \) if \(|x - y| < \delta \).

Theorem (a) Every continuous function is integrable

(b) Assume \(f : [a, b] \to \mathbb{R} \) is continuous and \(f(x) \geq 0 \) for all \(x \in [a, b] \). If there exists \(x_0 \in [a, b] \) such that \(f(x_0) > 0 \), then \(\int_a^b f > 0 \)

We have the implications \(f \) differentiable \(\Rightarrow \) \(f \) continuous \(\Rightarrow \) \(f \) integrable.

Fundamental Theorems of Calculus (a) Assume that \(F \) is differentiable on \((a, b)\) and continuous on \([a, b]\) such that also \(F'(x) \) is continuous on \([a, b]\). Then

\[
\int_a^b F'(x) = F(b) - F(a).
\]

(b) Assume \(f : [a, b] \to \mathbb{R} \) is continuous. Then

\[
\frac{d}{dx} \left[\int_a^x f \right] = f(x), \quad \frac{d}{dx} \left[\int_x^b f \right] = -f(x).
\]

Taylor polynomials and approximations Let \(I \) be an open interval and let \(f : I \to \mathbb{R} \) be a function with \(n \) derivatives. Then its \(n \)-th Taylor polynomial \(p_n \) at \(x_0 \in I \) is defined to be

\[
p_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.
\]

The function \(f \) is given by its Taylor series at \(x \), i.e. \(f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \), if \(f(x) = \lim_{n \to \infty} p_n(x) \).

Lagrange Remainder Theorem Assume \(f : I \to \mathbb{R} \) has \(n + 1 \) derivatives. Let \(x_0, x \in I \). Then there exists a number \(c \) between \(x_0 \) and \(x \) such that

\[
f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.
\]
Lemma (a) Let c be a constant. Then we have
\[
\lim_{n \to \infty} \frac{c^n}{n!} = 0.
\]
(b) Let (c_n) be a sequence such that $\lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|} = r$.
 (i) If $r < 1$, then $\lim_{n \to \infty} c_n = 0$
 (ii) If $r > 1$, then (c_n) is an unbounded sequence.

Weierstrass Approximation Theorem Let $f : [a, b] \to \mathbb{R}$ be a continuous function, and let $\epsilon > 0$. Then there exists a polynomial p such that $|p(x) - f(x)| < \epsilon$ for all $x \in [a, b]$.

Pointwise and uniform convergence Let $f_n : D \to \mathbb{R}$ be a sequence of functions, and let $f : D \to \mathbb{R}$.
 (a) The sequence (f_n) converges to f pointwise if $\lim f_n(x) = f(x)$ for all $x \in [a, b]$.
 (b) The sequence (f_n) converges to f uniformly if for every $\epsilon > 0$ we can find an N such that $|f_n(x) - f(x)| < \epsilon$ for all $x \in [a, b]$ and all $n \geq N$.

Theorem Assume $f_n \to f$ uniformly, and $D = [a, b]$.
 (a) If all f_n's are continuous, then so is f.
 (b) If all f_n's are integrable, then so is f. Moreover, in this case $\lim_{n \to \infty} \int_a^b f_n = \int_a^b f$.
 (c) Assume all f_n's are differentiable. If the f'_n's converge uniformly to a function g, and the functions f_n converge pointwise to the function f, then f is differentiable and $f' = g = \lim_{n \to \infty} f'_n$.

Theorem Assume for some $r > 0$ the function $f : (-r, r) \to \mathbb{R}$ is given by the power series
\[
f(x) = \sum_{k=0}^{\infty} c_k x^k, \quad \text{if } |x| < r.
\]
Then f has derivatives of all orders. In particular
\[
f'(c) = \sum_{k=0}^{\infty} k c_k x^{k-1}, \quad \text{if } |x| < r.
\]