Math 181A Worksheet Week 6

Examples:

1. Consistency by Definition
 \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Uniform}(0, \theta) \), show that \(\hat{\theta} = X_{\text{max}} \) is a consistent estimator for \(\theta \).

2. Consistency by Mean Square Error
 Suppose \(\hat{\theta}_n \) is an estimator for \(\theta \) with sample size \(n \). If \(\lim_{n \to \infty} \mathbb{E} \hat{\theta}_n = \theta \) and \(\lim_{n \to \infty} \text{var} \hat{\theta}_n = 0 \), then \(\hat{\theta} \) is consistent. (Hint: Use the Tchebychev/Markov’s Inequality in the following form \(\mathbb{P}(|X - \mathbb{E}X| \geq \epsilon) \leq \frac{\text{var}(X)}{\epsilon^2} \))

Practice:

1. Suppose \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Poisson}(\lambda) \), show that \(\hat{\lambda} = \bar{X} \) is a consistent estimator for \(\lambda \).

2. \(X_1, \ldots, X_n \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2) \), show that \(\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \) is a consistent estimator for \(\sigma^2 \).

3. \(X_1, \ldots, X_n \overset{iid}{\sim} \text{Exp}(\theta) \), show that \(\hat{\theta} = X_1 \) is NOT a consistent estimator for \(\theta \).