• In Lecture 2, we narrowed our study of graphs to "simple graphs" - graphs with finitely many vertices, and no loops or multiple edges.

• Simple graphs have many special properties. Among the most obvious is that their size (number of edges) is controlled by their order (number of vertices):

\[0 \leq |E| \leq \binom{|V|}{2} .\]

• We also made some elementary observations concerning the degree sequence of simple graphs:

(1) The total degree is twice the number of edges;

(2) The number of odd vertices is even;

(3) There exist two vertices of the same degree.
• Today, we study the notion of connectedness in simple graphs.

Definition: Vertices \(v, w \) in a graph \(\Gamma = (V, E) \) are connected if \(v = w \), or if there exists a walk from \(v \) to \(w \).

Definition: A subset \(C \subseteq V \) is said to be connected if \(v, w \in C \Rightarrow v, w \) connected.

Definition: A connected set \(C \subseteq V \) is said to be a connected component of \(\Gamma \) if it is maximal, in the sense that

\[C \subseteq C' \text{ and } C' \text{ connected} \Rightarrow C = C'. \]

• A graph with only one connected component is connected.
Proposition: Let Γ be a graph with exactly two odd vertices, v and w. These vertices are connected.

Proof: If not, then v, w belong to different connected components of Γ.

But then C is a graph with exactly one vertex of odd degree; by the Handshake Lemma, this is impossible.
Proposition: Let $\Gamma = (V,E)$ be a graph. Then,

$$\Gamma \text{ connected} \Rightarrow |E| > |V|-1.$$

Proof: Let $v \in V$. Since Γ is connected, there exists a walk from v to every other vertex. The best case scenario is that each of the $|V|-1$ remaining vertices is adjacent to v, and this requires $|V|-1$ edges.

\square

• Note that the converse is false:

![Diagram](image)
Proposition: Let $\Gamma = (V, E)$ be a graph. Then

$$|E| \geq \binom{n-1}{2} + 1 \Rightarrow \Gamma \text{ connected.}$$

Proof: • Start with the empty graph on $\{1, \ldots, n\}$, partition the vertices into two sets

$$K_1 = \{1, \ldots, x\}, \quad K_2 = \{x+1, \ldots, n\}.$$

• The maximal number of edges in a graph whose connected components are K_1 and K_2 is

$$\binom{x}{2} + \binom{n-x}{2}.$$

• Now,

$$\binom{x}{2} + \binom{n-x}{2} = \frac{1}{2}x(x-1) + \frac{1}{2}(n-x)(n-x-1).$$
So, we want to find \(x \in \{1, \ldots, n-1\} \) which maximizes

\[
e(x) = \frac{1}{2} x(x-1) + \frac{1}{2} (n-x)(n-x-1)
\]

\[
= \frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{2} (n^2 - 2nx + x^2 - n + x)
\]

\[
= x^2 - nx + \binom{n}{2}
\]

\[
= (x - \frac{n}{2})^2 + \binom{n}{2} - \frac{n^2}{4}.
\]

Clearly, the function is maximized by taking \(x = 1 \) (or \(x = n-1 \)).

This means that a disconnected graph with maximal number of edges looks like \(K_{n-1} \cup \{\text{isolated vertex}\} \), a graph which has \(\binom{n-1}{2} \) edges.
Proposition: Two vertices \(v \) and \(w \) are connected iff there exists a path from \(v \) to \(w \).

Proof:

- Since a path is a walk, one direction is obvious.

- For the other direction, proceed by induction on the length of a walk from \(v \) to \(w \).

- Base step: A walk of length 1 is a path.

- Induction step: let \(v_0, v_1, ..., v_k \) be a walk of length \(k \) from \(v \) to \(w \). If this walk is a path, we're done. If not, there exists a repeated vertex. Let \(i \in \{0, ..., k-1\} \) be the first repeated vertex, i.e. smallest number such that \(v_i = v_j \) for some \(j \in \{i+1, ..., k\} \). Then, \(v_0, v_1, v_j, ..., v_k \) is a walk \(v \rightarrow w \) of length \(k-1 \) or less, so there is a path from \(v \) to \(w \) by induction.

- \(\square \)