12. Basis and dimension

Recall two definitions:

Definition 12.1. The vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m \) are (linearly) dependent if there are scalars \(x_1, x_2, \ldots, x_m \), not all zero, such that
\[
x_1 \vec{v}_1 + x_2 \vec{v}_2 + \cdots + x_n \vec{v}_n = \vec{0}.
\]
We say that the vectors are (linearly) independent if they are not dependent.

Linear independence places a restriction on the number \(n \) of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \). If the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m \) are independent then \(n \leq m \). You cannot have too many independent vectors.

At the other extreme we have:

Definition 12.2. We say that the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m \) spans \(\mathbb{R}^m \) if every vector \(\vec{b} \in \mathbb{R}^m \) is a linear combination of \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \).

Vectors which span places a restriction on the number \(n \) of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \). If the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m \) span \(\mathbb{R}^m \) then \(n \geq m \). You cannot have too few vectors which span.

Definition 12.3. The vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in \mathbb{R}^m \) are a basis of \(\mathbb{R}^m \) if \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) are both independent and \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) span \(\mathbb{R}^m \).

The dimension of \(\mathbb{R}^m \) is \(n \), the size of a basis.

Since we already observed that if the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) are independent then \(n \leq m \) and if the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) span \(\mathbb{R}^m \) then \(n \geq m \). Therefore we must have \(n = m \). Thus \(\mathbb{R}^m \) has dimension \(m \).

In fact we have:

Theorem 12.4. Let \(A \) be an \(n \times n \) matrix.

The columns of \(A \) are a basis of \(\mathbb{R}^n \) if and only if \(A \) is invertible.

Example 12.5. Let \(I_n \) be the identity matrix. Then \(I_n \) is invertible. The columns of \(A \) are
\[
\vec{e}_1 = (1, 0, \ldots, 0), \quad \vec{e}_2 = (0, 1, \ldots, 0) \quad \text{and} \quad \vec{e}_n = (0, 0, \ldots, 1)
\]
a basis of \(\mathbb{R}^n \), called the standard basis.

Example 12.6. Consider the vectors \(\vec{v}_1 = (1, 1) \) and \(\vec{v}_2 = (1, -1) \).

We make a matrix with these columns:
\[
A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
\]

The determinant is
\[
ad - bc = 1 \cdot -1 - 1 \cdot 1 = -2 \neq 0.
\]
This matrix is invertible. The vectors $\vec{v}_1 = (1, 1)$ and $\vec{v}_2 = (1, -1)$ are a basis of \mathbb{R}^2.

In fact it is not hard to see this directly. \vec{v}_1 and \vec{v}_2 are not parallel, so they are independent. Two independent vectors in \mathbb{R}^2 always span. One can see this both algebraically and geometrically. Algebraically, if two vectors in the plane are independent then the homogeneous equation $A\vec{x} = \vec{0}$ has only one solution, the obvious solution $\vec{x} = (0, 0)$. In this case A must have two pivots and so there are no rows of zeroes. But then the equation $A\vec{x} = \vec{b}$ is always consistent and the two vectors \vec{v}_1 and \vec{v}_2 span \mathbb{R}^2.