Here are a slew of practice problems for the second midterm culled from old midterms:

1. Let

\[
A = \begin{pmatrix}
1 & 3 & 1 \\
1 & 4 & 5 \\
2 & 8 & 11
\end{pmatrix}
\]

Compute \(A^{-1} \).

2. Let

\[
A = \begin{pmatrix}
2 & 3 & 0 \\
1 & 3 & 5 \\
0 & 2 & 1
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
4 & 0 & -1 \\
0 & -3 & 4 \\
0 & 4 & 3
\end{pmatrix}
\]

(a) Compute \(\det A \).
(b) Compute \(\det B \).
(c) Compute \(\det AB \).
(d) Compute \(\det A^T \).
(e) Which of \(A, B, AB \) and \(A^T \) are invertible?

3. Let

\[
A = \begin{pmatrix}
2 & 4 & 6 \\
2 & 5 & 8 \\
-2 & -3 & -4
\end{pmatrix}
\]

(a) Find a basis for \(\text{Col}(A) \).
(b) Find a basis for \(\text{Row}(A) \).
(c) Find a basis for \(\text{Nul}(A) \).

3. (a) If a 7 \times 5 matrix \(A \) has rank 2 find:
(i) \(\dim \text{Nul}(A) \).
(ii) \(\text{rank}(A^T) \).

(b) If the null space of a 4 \times 6 matrix \(A \) is 3-dimensional, what is \(\dim \text{Col}(A) \)?

4. The sets

\[
\mathcal{B} = \{ (-1, 8), (1, -7) \} \quad \text{and} \quad \mathcal{C} = \{ (1, 2), (1, 1) \}
\]

are both bases of \(\mathbb{R}^2 \).

Find the coordinates of the vectors in \(\mathcal{B} \) in terms of the basis \(\mathcal{C} \).
5. Let
\[A = \begin{pmatrix}
1 & -1 & 2 & 3 & 0 \\
2 & -1 & 4 & 11 & 3 \\
-1 & 3 & -2 & 8 & 4 \\
1 & 1 & 2 & 14 & 4
\end{pmatrix}. \]

(a) Find a basis for \(\text{Col}(A) \).
(b) Find a basis for \(\text{Row}(A) \).
(c) Find a basis for \(\text{Nul}(A) \).

6. Find the determinant of the matrix
\[\begin{pmatrix}
2 & 3 & -2 & 1 \\
0 & 2 & 5 & 4 \\
0 & -3 & 2 & -3 \\
0 & 1 & 1 & 2
\end{pmatrix}. \]

7. Let \(P_2 \) denote the space of polynomials of degree no greater than 2. Let
\[W = \{ p \in P_2 | p(-2) = 0 \}. \]

(a) Verify that \(H \) is a linear subspace of \(P_2 \).
(b) Give a careful definition of what is meant by a basis for a vector space.
(c) Find a basis for \(H \). Justify your answer.

8. Let
\[A = \begin{pmatrix}
1 & 5 & -1 \\
3 & 7 & -11 \\
-2 & -2 & 10
\end{pmatrix}. \]

Is the vector
\[\begin{pmatrix}
1 \\
1 \\
2
\end{pmatrix} \]
in the column space of \(A \)? Justify your answer.

9. (a) If \(A \) is a \(4 \times 3 \) matrix, what is the largest dimension of the row space of \(A \)?
(b) If \(A \) is a \(3 \times 4 \) matrix, what is the largest dimension of the row space of \(A \)?

10. Let \(A \) be an \(m \times n \) matrix. Show that the null space of \(A \)
\[\text{Nul} \, A = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \} \]
is closed under vector addition.

11. Suppose \(A \) is \(n \times n \) and for some \(\vec{b} \in \mathbb{R}^n \) the equation \(A\vec{x} = \vec{b} \) has more than one solution. Can the columns of \(A \) span \(\mathbb{R}^n \)? Why or why not? Explain.

12. True or False:
(a) If A and B are two 3×3 matrices and
\[B = (\vec{b}_1, \vec{b}_2, \vec{b}_3) \]
then
\[AB = (A\vec{b}_1 + A\vec{b}_2 + A\vec{b}_3). \]
(b) A plane in \mathbb{R}^2 is a two dimensional linear subspace of \mathbb{R}^3.
(c) If
\[\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p \} \]
is a linearly independent set in a vector space V then $\dim V \geq p$.
(d) If \vec{u} and \vec{v} are two vectors in \mathbb{R}^3 then the rank of the matrix $\vec{u}\vec{v}^T$ is always 0 or 1.
(e) For a 3×3 matrix A, $\det(3A) = 3 \det(A)$.

13. Let $f_0(t) = 1$, $f_1(t) = 1 + t$, $f_2(t) = 1 + t + t^2$, $f_3(t) = t^3$.
(a) Show that
\[\mathcal{B} = \{ f_0(t), f_1(t), f_2(t), f_3(t) \} \]
is a basis for the vector space P_3 of all polynomials of degree at most 3.
(b) Find the coordinates of the polynomial $f(t) = t^2 + t^3$ relative to \mathcal{B}.

14. Let
\[A = \begin{pmatrix} 2 & 1 & -1 & 0 & 3 \\ 0 & 2 & 0 & 0 & 2 \\ 1 & 3 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}. \]
Compute $\det A$. Find a basis for the column space of A. What is the rank and the nullity of A?

15. If
\[f : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \]
is a linear map and $\text{Nul}(f) = \text{Span}\{\vec{e}_1\}$, what is the dimension of the image of f?

16. Is
\[\mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} -6 \\ 11 \\ 10 \end{pmatrix} \right\} \]
a basis for \mathbb{R}^3?

17. Find b such that $(-1, b, 2, 3)$ is in the span of $(1, 2, 3, 4)$ and $(3, 4, 4, 5)$.

18. Can you give a simple reason why $\det(A) = 0$?
(a) For which values of β is A invertible?

(b) Assuming A is singular then find the rank of A, the nullity of A and $\text{Nul}(A)$.

20. Suppose that b_1, b_2, b_3 and b_4 are real numbers. Show that there is exactly one polynomial $p(t)$ in the vector space P_3 of polynomials of degree at most 3 such that:

$$p(1) = b_1, \quad p'(0) = b_2, \quad \int_{-1}^{1} p(t) \, dt = b_3, \quad \text{and} \quad p(-1) = b_4.$$

21. Let

$$H = \text{Span}\{\vec{u}, \vec{v}\} \quad \text{and} \quad K = \text{Span}\{\vec{u}, \vec{v}, \vec{u} + \vec{v}\}.$$

Prove that $H = K$.

22. Suppose that $A^2 = 0$. Prove that A is not invertible.