Notes from Section 10

Least Squares Solutions

Situation: We want to solve $Ax = b$ but there is no solution (since b is not in $\text{Col}(A)$). What do we do? Solution: Instead of giving up, we try to find x that makes Ax as close as possible to b.

In previous sections, we learned (via the Best Approximation Theorem) that if Ax is as close as possible to b then $Ax = \hat{b}$ where \hat{b} is the orthogonal projection of b onto $\text{Col}(A)$.

Let \hat{x} be a solution to “Ax is as close as possible to b.” Then $A\hat{x} = \hat{b}$.

To find \hat{x} we could first find \hat{b}, by finding an orthonormal basis for the column space of A and projecting b onto $\text{Col}(A)$. Finding orthonormal bases is no fun, so the book gives us an easier way to find \hat{x}.

Theorem 0.1 \hat{x} satisfies $A\hat{x} = \hat{b}$ if and only if \hat{x} is a solution to $A^T Ax = A^T b$.

Proof: Assume $A\hat{x} = \hat{b}$. Recall we can write b as $b = \hat{b} + y$ where y is the part of b orthogonal to $\text{Col}(A)$. Then $y = b - \hat{b}$. Since $A\hat{x} = \hat{b}$, $y = b - A\hat{x}$. Now we multiply both sides by A^T. Let $A = [a_1 a_2 \ldots a_n]$

$$A^T y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} y = \begin{pmatrix} a_1 \cdot y \\ a_2 \cdot y \\ \vdots \\ a_n \cdot y \end{pmatrix}$$

Since a_i are the column vectors of A, multiplying these two matrices row by column we get the rows of A^T, which are the columns of A multiplied by y, giving us a dot product for each entry. Since y is orthogonal to $\text{Col}(A)$, all the dot products are 0. Thus $A^T y = 0$. So

$$0 = A^T (y) = A^T (b - A\hat{x})$$

$$0 = A^T (b - A\hat{x}) = A^T b - A^T (A\hat{x}) = A^T b - A^T \hat{b}$$

Thus if $A\hat{x} = \hat{b}$, \hat{x} satisfies $A^T Ax = \hat{b}$. Following the argument backwards, we get that if \hat{x} satisfies $A^T Ax = \hat{b}$ then $A\hat{x} = \hat{b}$.