Chapter 9, Problem 10 (graded)

Let G be a cyclic group. That is, $G = \langle a \rangle$ for some $a \in G$. Then given any $g \in G$, $g = a^n$ for some integer n.

Let H be any normal subgroup of G (actually, since G is cyclic, it is also Abelian, so all subgroups of G are normal), and consider the factor group $G/H = \{gH : g \in G\}$. G/H is the group whose elements are left cosets of H. Let gH be any element of G/H. Since $g = a^n$ for some integer n, we have

$$gH = a^nH.$$

Next, by definition of multiplication in a factor group,

$$gH = a^nH = (aH)^n.$$

Therefore, if gH is any element of G/H, then $gH = (aH)^n$ for some integer n. This implies that $G/H = \langle aH \rangle$. That is, G/H is a cyclic group generated by the element aH.

Chapter 9, Problem 16 (graded)

Before presenting the solution, let me talk about computing order in a factor group G/H. Suppose gH is an element of G/H (so $g \in G$) and I want to compute its order as an element of G/H. In other words, I want to find an integer n such that

$$(gH)^n = eH = H$$

and if $1 \leq m < n$,

$$(gH)^m \neq H.$$

By definition of multiplication in a factor group, we need to find n so that

$$g^nH = H$$

and if $1 \leq m < n$,

$$g^mH \neq H.$$
By the Lemma on page 139, \(g^n H = H \) if \(g^n \in H \), and \(g^n H \neq H \) if \(g^n \notin H \).

Therefore, \(|gH| = n \) in \(G/H \) if \(n \) is the smallest positive integer for which \(g^n \in H \). This allows you to switch between working in \(G/H \) and in \(G \).

Now, consider the group \(D_6 \) and a subgroup \(Z(D_6) = \{R_0, R_{180}\} \), the center of \(D_6 \). That is \(R_0 \) and \(R_{180} \) commute with any element in \(D_6 \). Note that \(Z(D_6) \) is a normal subgroup of \(D_6 \) (see Example 2 on page 179). To find the order of the element \(R_60Z(D_6) \) in \(D_6/Z(D_6) \), we need to find the smallest positive integer \(n \) such that

\[
R_6^n \in Z(D_6) = \{R_0, R_{180}\}.
\]

Let us try some values for \(n \):

- \(n = 1 \) gives us \(R_6^1 = R_{60} \notin Z(D_6) \).
- \(n = 2 \) gives us \(R_6^2 = R_{120} \notin Z(D_6) \).
- \(n = 3 \) gives us \(R_6^3 = R_{180} \in Z(D_6) \).

Therefore, \(n = 3 \) is the smallest integer for which \(R_6^n \in Z(D_6) \), and thus \(R_{60}Z(D_6) \) has order 3 in \(D_6/Z(D_6) \).

3 Chapter 9, Problem 20 (not graded)

Let \(U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\} \) be the group of positive integers coprime to 20 whose operation is multiplication mod 20. Then

\[
U_5(20) = \{x \in U(20) : x = 1 \text{ mod } 5\} = \{1, 11\}.
\]

This is a subgroup of \(U(20) \). It is normal because \(U(20) \) is Abelian. Since \(|U(20)| = 8 \) and \(|U_5(20)| = 2 \), by Corollary 1 on page 142, there are \(\frac{8}{2} = 4 \) distinct cosets of \(U_5(20) \). They are:

\[
\begin{align*}
1U_5(20) &= U_5(20) = \{1, 11\} = \{11, 1\} = \{11, 1 \cdot 11\} = 11U_5(20) \\
3U_5(20) &= \{3, 33\} = \{3, 13\} = \{13, 3\} = \{13, 13 \cdot 11\} = 13U_5(20) \\
7U_5(20) &= \{7, 77\} = \{7, 17\} = \{17, 7\} = \{17, 17 \cdot 11\} = 17U_5(20) \\
9U_5(20) &= \{9, 99\} = \{9, 19\} = \{19, 9\} = \{19, 19 \cdot 11\} = 19U_5(20)
\end{align*}
\]

Remember, we are working mod 20. Hence

\[
U(20)/U_5(20) = \{\{1, 11\}, \{3, 13\}, \{7, 17\}, \{9, 19\}\}.
\]

We want to write our cosets as \(aU_5(20) \). Let us use values of \(a \) between 1 and 9:

\[
U(20)/U_5(20) = \{U_5(20), 3U_5(20), 7U_5(20), 9U_5(20)\}.
\]

Multiplication in \(U(20)/U_5(20) \) works like the multiplication on \(U(20) \):

\[
aU_5(20) \cdot bU_5(20) = (ab)U_5(20)
\]

2
When making the Cayley table, we only want to use \(U_5(20) \), \(3U_5(20) \), \(7U_5(20) \), \(9U_5(20) \). So, if we were multiplying and somehow got \(13U_5(20) \), we should replace it by the same coset \(3U_5(20) \).

\[
\begin{array}{cccc}
\times & U_5(20) & 3U_5(20) & 7U_5(20) & 9U_5(20) \\
U_5(20) & U_5(20) & 3U_5(20) & 7U_5(20) & 9U_5(20) \\
3U_5(20) & 3U_5(20) & 9U_5(20) & U_5(20) & 7U_5(20) \\
7U_5(20) & 7U_5(20) & U_5(20) & 9U_5(20) & 3U_5(20) \\
9U_5(20) & 9U_5(20) & 7U_5(20) & 3U_5(20) & U_5(20) \\
\end{array}
\]

4 Chapter 9, Problem 28 (graded)

4.1 Distinguishing between \(\mathbb{Z}_4 \) and \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \)

The main difference between these two groups is that \(\mathbb{Z}_4 \) has elements of order four, while \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \) does not. Thus, if we have a group \(G \) of order four, it is isomorphic to either \(\mathbb{Z}_4 \) or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \), and we can figure out which one by either:

1. Showing that the order of every element in \(G \) is less than or equal to two (so \(G \approx \mathbb{Z}_2 \oplus \mathbb{Z}_2 \)), or
2. Showing that at least one element of \(G \) has order four (so \(G \approx \mathbb{Z}_4 \)).

In this problem, we have an Abelian group \(G = \mathbb{Z}_4 \oplus \mathbb{Z}_4 \) and two (normal) subgroups

\[
H = \{(0,0), (2,0), (0,2), (2,2)\}
\]

and

\[
K = \langle (1,2) \rangle = \{(0,0), (1,2), (2,0), (3,2)\}.
\]

We will look at the factor groups \(G/H \) and \(G/K \) and determine if they are isomorphic to either \(\mathbb{Z}_4 \) or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Note that the order of both \(G/H \) and \(G/K \) is 4, since \(G \) itself has order 16 and both \(H \) and \(K \) have order 4, so

\[
|G/H| = \frac{|G|}{|H|} = \frac{4 \cdot 4}{4} = 4,
\]

and similarly for \(G/K \).

4.2 \(G/H \)

Let \((a,b) + H \) be an element of \(G/H \). That is, \((a,b) \in G \), so \(a \) and \(b \) are integers between 0 and 3. Let us look at integer multiples of \((a,b) + H \) (in order to obtain information on the order of \((a,b) + H \)).

\[
2 \cdot ((a,b) + H) = (2 \cdot (a,b)) + H = (2a, 2b) + H.
\]

Is \((2a, 2b) + H = H \), the identity element of \(G/H \)? In other words, is \((2a, 2b) \in H \)? Note that \(2a \) is either 0 or 2, while \(2b \) is either 0 or 2 (remember to reduce
mod 4), so \((2a, 2b) \in H\), and hence \((2a, 2b) + H = H\). Therefore, for any \((a, b) + H \in G/H\), since \(2 \cdot ((a, b) + H) = H\),

\[|(a, b) + H| \leq 2. \]

We cannot say that the order of \((a, b) + H\) is two since it is possible that \(1 \cdot ((a, b) + H) = H\) for certain choices of \((a, b)\), but we can conclude that the order of every element of \(G/H\) is less than or equal to two, so \(G/H\) has no elements of order four. Therefore,

\[G/H \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2. \]

4.3 \(G/K\)

Let \((a, b) + K\) be an element of \(G/K\). Let us look at integer multiples of \((a, b) + K\).

\[2 \cdot ((a, b) + K) = (2 \cdot (a, b)) + K = (2a, 2b) + K. \]

Is \((2a, 2b) + K = K\), the identity element of \(G/K\)? In other words, is \((2a, 2b) \in K\)? In this case, it is possible to choose \((a, b)\) so that \((2a, 2b) \notin K\). For this to happen, we need to pick \(b\) so that \(2b = 2\), and we need to pick \(a\) so that \(2a\) is not equal to 1 or 3. Thus, we can try \((a, b) = (0, 1)\). Then \((2a, 2b) = (0, 2) \notin K\), so in \(G/K\),

\[2 \cdot ((0, 1) + K) = (2 \cdot (0, 1)) + K = (0, 2) + K \neq K. \]

Furthermore, \((0, 1) + K\) itself is not equal to \(K\) since \((0, 1) \notin K\). Hence

\[|(0, 1) + K| > 2. \]

What could the order of \((0, 1) + K\) be in \(G/K\)? Since \(|G/K| = 4\), we know the order of \((0, 1) + K\) must divide 4. Since \(|(0, 1) + K| > 2\),

\[|(0, 1) + K| = 4. \]

Therefore, \(G/K\) has an element of order 4, so it must be isomorphic to \(\mathbb{Z}_4\).

5 Chapter 9, Problem 30 (not graded)

We need to write 165 as a product of coprime integers in four different ways and use the formula in the middle of page 192 to write \(U(165)\) as an internal direct product. In general, if \(m = n_1n_2 \ldots n_k\) where \(\gcd(n_i, n_j) = 1\) for \(i \neq j\),

\[U(m) = U_{m/n_1}(m) \times U_{m/n_2}(m) \times \ldots \times U_{m/n_k}(m). \]

165 = 3 \cdot 5 \cdot 11

Here, \(n_1 = 3\), \(n_2 = 5\), and \(n_3 = 11\). Then

\[U(165) = U_{165/3}(165) \times U_{165/5}(165) \times U_{165/11}(165) = U_{55}(165) \times U_{33}(165) \times U_{15}(165). \]
165 = 15 \cdot 11

Here, \(n_1 = 15 \), and \(n_2 = 11 \). Then

\[U(165) = U_{165/15}(165) \times U_{165/11}(165) = U_{11}(165) \times U_{15}(165). \]

165 = 3 \cdot 55

Here, \(n_1 = 3 \), and \(n_2 = 55 \). Then

\[U(165) = U_{165/3}(165) \times U_{165/55}(165) = U_{55}(165) \times U_{3}(165). \]

165 = 5 \cdot 33

Here, \(n_1 = 5 \), and \(n_2 = 33 \). Then

\[U(165) = U_{165/5}(165) \times U_{165/33}(165) = U_{33}(165) \times U_{5}(165). \]

6 Chapter 9, Problem 34 (not graded)

Since \(\mathbb{Z} \) has addition as its operation, we should be proving that \(\mathbb{Z} = H + K \). In other words,

\[Z = \langle 5 \rangle + \langle 7 \rangle = \{ 5s + 7t : s, t \in \mathbb{Z} \}. \]

Notice that the definition of \(\langle 5 \rangle + \langle 7 \rangle \) tells us that \(\langle 5 \rangle + \langle 7 \rangle \) is the set of linear combinations of 5 and 7. Since \(\gcd(5, 7) = 1 \), there exist integers \(s_1, t_1 \) such that

\[1 = 5s_1 + 7t_1. \]

For example, take \(s_1 = 3 \) and \(t_1 = -2 \). If \(n \) is any other integer, we can express it as a linear combination of 5 and 7:

\[n = n \cdot 1 = n(5s_1 + 7t_1) = 5(ns_1) + 7(nt_1) \in \langle 5 \rangle + \langle 7 \rangle. \]

Thus, \(Z \subseteq \langle 5 \rangle + \langle 7 \rangle \). Since \(\langle 5 \rangle + \langle 7 \rangle \subseteq \mathbb{Z} \), we have

\[Z = \langle 5 \rangle + \langle 7 \rangle. \]

However, \(\langle 5 \rangle \cap \langle 7 \rangle \neq \{0\} \). In fact, \(\langle 5 \rangle \cap \langle 7 \rangle = \langle 35 \rangle \), since 35 is a multiple of both 5 and 7. Indeed, \(\mathbb{Z} \neq \langle 5 \rangle \times \langle 7 \rangle \), and we will show this by proving that \(\mathbb{Z} \) is not isomorphic to \(\langle 5 \rangle \oplus \langle 7 \rangle \) and applying the contrapositive of Theorem 9.6.

To show that \(\mathbb{Z} \) is not isomorphic to \(\langle 5 \rangle \oplus \langle 7 \rangle \), we will proceed by contradiction and assume that there is an isomorphism \(\phi : \mathbb{Z} \rightarrow \langle 5 \rangle \oplus \langle 7 \rangle \). Let

\[\phi(1) = (5s, 7t) \in \langle 5 \rangle \oplus \langle 7 \rangle. \]

Then for any integer \(n \),

\[\phi(n) = (5ns, 7nt). \]
Consider the element \((5s + 5, 7t) \in \langle 5 \rangle \oplus \langle 7 \rangle\). Since \(\phi\) is an isomorphism, it must be onto, so there is an integer \(m\) such that

\[
\phi(m) = (5s + 5, 7t).
\]

However,

\[
\phi(m) = (5ms, 7mt),
\]

so we need to find \(m\) so that \(5s + 5 = 5ms\) and \(7t = 7mt\). Thus, by setting components equal and canceling 5 and 7,

\[
s + 1 = ms
\]

and

\[
t = mt.
\]

If \(t \neq 0\), then this forces \(m = 1\), but then we get \(s + 1 = 1s = s\), which is not possible. Thus, \(t = 0\), but then for any integer \(n\),

\[
\phi(n) = (5ns, 7nt) = (5ns, 0),
\]

so \(\phi(Z) = \langle 5s \rangle \oplus \{0\} \neq \langle 5 \rangle \oplus \langle 7 \rangle\). In other words, for any integer \(m\), the second component of \(\phi(m)\) must be zero. For example, there is no integer \(m\) for which

\[
\phi(m) = (5, 7).
\]

Therefore, \(\phi\) is not onto, contradicting the assumption that it was an isomorphism. Therefore, \(Z\) is not isomorphic to \(\langle 5 \rangle \oplus \langle 7 \rangle\), so by Theorem 9.6, \(Z\) is not equal to \(\langle 5 \rangle \times \langle 7 \rangle\).

7 Chapter 9, Problem 44 (not graded, but take a look)

By Theorem 9.4, page 187, we have

\[
D_{13}/Z(D_{13}) \approx \text{Inn}(D_{13}),
\]

which is pretty close to what we want. In order to prove that \(D_{13}\) itself is isomorphic to \(\text{Inn}(D_{13})\), we need to do the following:

1. Prove that \(Z(D_{13}) = \{R_0\}\), where \(R_0\) is the identity element of \(D_{13}\) (it is a trivial rotation by a multiple of 360 degrees).

2. Prove that \(D_{13}/\{R_0\} \approx D_{13}\). This can be done by either defining an isomorphism from \(D_{13}\) to \(D_{13}/\{R_0\}\), or by defining a homomorphism from \(D_{13}\) to \(D_{13}\) which is onto and has kernel equal to \(\{R_0\}\). I will present both ways.

3. Apply part 2, part 1, and then Theorem 9.4:

\[
D_{13} \approx D_{13}/\{R_0\} = D_{13}/Z(D_{13}) \approx \text{Inn}(D_{13}).
\]
7.1 \(Z(D_{13}) = \{R_0\} \)

Let \(R \) be a rotation by \(\frac{360}{13} \) degrees counter-clockwise (so \(R^{13} = R_0 \)) and \(k \) be an integer with \(1 \leq k < 13 \). Then \(R^k \) is a rotation by \(\frac{360}{13}k \) degrees, and since \(1 \leq k < 13 \), \(R^k \) is not the identity (trivial rotation by a multiple of 360 degrees).

Let \(F \) be any flip.

Our goal is to prove that \(R^k \) and \(F \) are not in \(Z(D_{13}) \) for \(1 \leq k < 13 \). We will prove that

\[
FR^k \neq R^k F
\]

and hence \(F \) does not commute with \(R^k \), so they cannot be in \(Z(D_{13}) \). This will leave \(R_0 \) as the only element in \(Z(D_{13}) \).

By exercise 32 on page 54, we have

\[
FR^k F = R^{1-k}.
\]

First, let me point out that \(R^k \neq R^{-k} \). This is because by Theorem 4.2 on page 75, \(|R^k| = \frac{|R|}{\gcd(|R|,k)} = \frac{13}{\gcd(13,k)} = \frac{13}{1} = 13 \). \(|R| = 13 \) because if a 13-sided figure is rotated by \(\frac{360}{13} \) degrees, it would have to be rotated twelve more times for a total of thirteen rotations to get back to the original position. \(\gcd(13,k) = 1 \) since 13 is coprime to all integers between 1 and 12. Hence \((R^k)^{13} = R_0 \), and \((R^k)^2 \neq R_0 \) (2 is a positive integer less than the order of \(R^k \)). Since \((R^k)^2 \neq R_0 \), \(R^k \neq (R^k)^{-1} = R^{-k} \).

Thus, we have

\[
FR^k F = R^{1-k}.
\]

Since \(FF = R_0 \), we can multiply on the right by \(F \) to get

\[
FR^k = R^{-k} F.
\]

Since \(R^{-k} \neq R^k \), \(R^{-k} F \neq R^k F \), so

\[
FR^k = R^{-k} F \neq R^k F.
\]

Therefore, \(F \) does not commute with \(R^k \), and \(R^k \) does not commute with \(F \), so neither of them can be in \(Z(D_{13}) \). Hence the only element in \(Z(D_{13}) \) is \(R_0 \), so

\[
Z(D_{13}) = \{R_0\}.
\]

7.2 \(D_{13}/\{R_0\} \approx D_{13} \)

There are two ways to prove this result.

7.2.1 Finding an isomorphism from \(D_{13} \) to \(D_{13}/\{R_0\} \)

Define \(f : D_{13} \to D_{13}/\{R_0\} \) by

\[
f(g) = g \{R_0\}.
\]
Then for any \(g, h \in D_{13} \),
\[
 f(gh) = gh \{ R_0 \} = g \{ R_0 \} h \{ R_0 \} = f(g)f(h)
\]
so \(f \) preserves the operations.

Next, suppose
\[
 f(g) = f(h).
\]
Then
\[
 g \{ R_0 \} = h \{ R_0 \}
\]
so
\[
 \{ g \} = \{ h \}.
\]
Therefore, \(g = h \). We could also use part 5 of the Lemma on page 139 to say that
\[
 g^{-1}h \in \{ R_0 \}
\]
so \(g^{-1}h = R_0 \), and thus \(g = h \). Hence \(f \) is 1-1.

Finally, if we have a coset \(g \{ R_0 \} \in D_{13}/\{ R_0 \} \), then by definition of \(f \),
\[
 f(g) = g \{ R_0 \},
\]
so \(f \) is onto. Therefore, \(f \) is an isomorphism, and
\[
 D_{13}/\{ R_0 \} \approx D_{13}.
\]

7.2.2 Finding a homomorphism from \(D_{13} \) to \(D_{13} \) which is onto and has kernel equal to \(\{ R_0 \} \)

Define \(\phi : D_{13} \rightarrow D_{13} \) by
\[
 \phi(g) = g.
\]
That is, \(\phi \) is the identity function on \(D_{13} \).

Then for any \(g, h \in D_{13} \),
\[
 \phi(gh) = gh = \phi(g)\phi(h).
\]
Thus, \(\phi \) is a homomorphism since it preserves operations. Now we need to prove that \(\phi \) is onto and has kernel equal to \(\{ R_0 \} \).

Given any \(g \in D_{13} \),
\[
 \phi(g) = g.
\]
Thus, \(\phi \) is onto, so \(\phi(D_{13}) = D_{13} \).

Finally, suppose \(g \in \text{Ker}\phi \). Then \(\phi(g) = R_0 \), so \(g = \phi(g) = R_0 \), and therefore \(\text{Ker}\phi \subseteq \{ R_0 \} \). On the other hand, since \(\phi(R_0) = R_0 \), \(R_0 \in \text{Ker}\phi \), so \(\{ R_0 \} \subseteq \text{Ker}\phi \). Thus, \(\text{Ker}\phi = \{ R_0 \} \).

By the First Isomorphism Theorem on page 207,
\[
 D_{13}/\text{Ker}\phi \approx \phi(D_{13}).
\]
Since \(\text{Ker}\phi = \{ R_0 \} \) and \(\phi(D_{13}) = D_{13} \),
\[
 D_{13}/\{ R_0 \} \approx D_{13}.
\]
7.3 Conclusion

By part 2,
\[D_{13} \approx D_{13}/\{R_0\}. \]

By part 1, since \(Z(D_{13}) = \{R_0\} \),
\[D_{13}/\{R_0\} = D_{13}/Z(D_{13}). \]

By Theorem 9.4, page 187,
\[D_{13}/Z(D_{13}) \approx \text{Inn}(D_{13}). \]

Putting all this together,
\[D_{13} \approx D_{13}/\{R_0\} = D_{13}/Z(D_{13}) \approx \text{Inn}(D_{13}), \]
and therefore,
\[D_{13} \approx \text{Inn}(D_{13}). \]

8 Chapter 9, Problem 70 (graded)

Let \(H = \{e, h\} \) and let \(Z(G) \) be the center of \(G \). To show that \(H \subseteq Z(G) \), we need to show that each element of \(H \) is an element of \(Z(G) \). By definition, for any \(g \in G \), since
\[eg = g = ge \]
e \(\in Z(G) \). Now we need to show that \(h \) commutes with every element in \(G \).

Since \(H \) is normal, we know that for any \(g \in G \), \(gh = Hg \) and \(ghg^{-1} \subseteq H \). This gives us two options to proceed.

8.1 Using \(gH = Hg \)

For any \(g \in G \),
\[gH = \{ge, gh\} = \{g, gh\}, \]
and
\[Hg = \{eg, hg\} = \{g, hg\}. \]

Therefore, since \(gH = Hg \),
\[\{g, gh\} = \{g, hg\} , \]
so \(gh = hg \) for any \(g \in G \). Therefore, \(h \in Z(G) \), so \(H \subseteq Z(G) \).

8.2 Using \(ghg^{-1} \subseteq H \)

For any \(g \in G \), \(ghg^{-1} \subseteq H \). Hence \(geg^{-1} = e \in H \) and \(ghg^{-1} \in H \), so \(ghg^{-1} \)
is either \(e \) or \(h \). If \(ghg^{-1} = e \), then \(h = g^{-1}eg = e \), a contradiction, so
\[ghg^{-1} = h. \]

Therefore, \(gh = hg \) for any \(g \in G \), so \(h \in Z(G) \), and hence \(H \subseteq Z(G) \).
9 Chapter 10, Problem 4 (not graded)

Let \(\sigma : S_n \rightarrow \mathbb{Z}_2 \) be the mapping described in example 11, page 206. We can describe \(\sigma \) better by using the fact that every permutation is a product of 2-cycles.

Let \(\alpha \in S_n \), and suppose we can write \(\alpha \) as a product of \(r \) 2-cycles. If \(r \) is an even number, then \(\alpha \) is an even permutation, so \(\sigma(\alpha) = 0 \). If \(r \) is an odd number, then \(\alpha \) is an odd permutation, so \(\sigma(\alpha) = 1 \). Notice that either way, \(\sigma(\alpha) = r \mod 2 \). Theorem 5.5 on page 105 assures us that we do not need to worry about the exact value of \(r \), only its remainder when dividing by 2.

Therefore, let \(\alpha, \beta \in S_n \), and suppose \(\alpha \) is a product of \(r \) 2-cycles and \(\beta \) as a product of \(s \) 2-cycles. Then \(\alpha \beta \) is a product of \(r + s \) 2-cycles. Thus,

\[
\sigma(\alpha \beta) = r + s \mod 2
\]

and

\[
\sigma(\alpha) + \sigma(\beta) = r \mod 2 + s \mod 2 = r + s \mod 2
\]

so

\[
\sigma(\alpha \beta) = \sigma(\alpha) + \sigma(\beta).
\]

Hence \(\sigma \) preserves operations, so it is a homomorphism.

10 Chapter 10, Problem 10 (graded)

Let \(f : \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{10} \) be a function given by \(f(x) = 3x \) reduced mod 10. Be careful: \(0 \leq x \leq 11 \).

We will present a few ways to solve this problem.

10.1 Showing that \(f \) does not preserve the operations

In \(\mathbb{Z}_{12} \), \(6 + 6 = 0 \mod 12 \). However,

\[
f(6 + 6) = f(0) = 0
\]

while

\[
f(6) + f(6) = 18 + 18 = 36 = 6
\]

and \(0 \neq 6 \) in \(\mathbb{Z}_{10} \). Thus, \(f \) does not preserve the operations because \(f(6 + 6) \neq f(6) + f(6) \).

10.2 Showing that \(f \) does not preserve the operations (another example)

In \(\mathbb{Z}_{12} \), \(7 + 7 = 2 \mod 12 \). However,

\[
f(7 + 7) = f(2) = 6
\]
while
\[f(7) + f(7) = 21 + 21 = 42 = 2 \]
and \(6 \neq 2 \) in \(\mathbb{Z}_{10} \). Thus, \(f \) does not preserve the operations because \(f(7 + 7) \neq f(7) + f(7) \).

10.3 Using Theorem 10.1, Part 2
In \(\mathbb{Z}_{12} \), \(2 \cdot 8 = 4 \) mod 12. However,
\[f(2 \cdot 8) = f(4) = 12 = 2 \]
while
\[2 \cdot f(8) = 2 \cdot (24) = 48 = 8 \]
and \(2 \neq 8 \) in \(\mathbb{Z}_{10} \). Thus, \(f \) fails Part 2 of Theorem 10.1 because \(f(2 \cdot 8) \neq 2 \cdot f(8) \). It cannot be a homomorphism.

10.4 Using Theorem 10.1, Part 3
In \(\mathbb{Z}_{12} \), \(2 \cdot 6 = 0 \) and \(1 \cdot 6 \neq 0 \), so \(|6| = 2 \). However,
\[f(6) = 18 = 8 \]
and in \(\mathbb{Z}_{10} \), \(|8| = |8 \cdot 1| = \frac{10}{\gcd(10,8)} = 5 \), which does not divide 2, the order of 6 in \(\mathbb{Z}_{12} \). Thus, \(f \) fails Part 3 of Theorem 10.1.

10.5 Using Theorem 10.1, Part 4
Ker\(f = \{x \in \mathbb{Z}_{12} : f(x) = 0\} \). We see that Ker\(f = \{0, 10\} \) since \(f(0) = 0 = 30 = f(10) \) mod 10. Ker\(f \) is not a subgroup of \(\mathbb{Z}_{12} \) since it is not closed \((10 + 10 = 8 \notin \text{Ker}f)\), and does not have inverses (the additive inverse of 10 in \(\mathbb{Z}_{12} \) is 2, which is not in Ker\(f \) since \(f(2) = 6 \neq 0 \) in \(\mathbb{Z}_{10} \)). Thus, \(f \) cannot be a homomorphism.

10.6 Using Theorem 10.1, Part 5
We have \(f(1) = 3 = 33 = f(11) \) mod 10, but
\[1 + \text{Ker}f = \{1 + 0, 1 + 10\} = \{1, 11\} \]
and (since \(21 = 9 \) mod 12),
\[11 + \text{Ker}f = \{11 + 0, 11 + 10\} = \{11, 9\} \]
so
\[1 + \text{Ker}f \neq 11 + \text{Ker}f \]
10.7 Using Theorem 10.1, Part 6

We have $f(3) = 9$, but the set $f^{-1}(9) = \{3\}$, while $3 + \text{Ker } f = \{3 + 0, 3 + 10\} = \{3, 1\}$. $f^{-1}(9) \neq 3 + \text{Ker } f$.

10.8 Using Theorem 10.2, Part 1

Let $H = \{0, 6\}$ be a subgroup of \mathbb{Z}_{12}. Then $f(\{0, 6\}) = \{f(0), f(6)\} = \{0, 8\}$, which is not a subgroup of \mathbb{Z}_{10} since it is not closed ($8 + 8 = 6 \notin f(\{0, 6\})$) and it does not contain all inverses (it does not have 2, the additive inverse of 8).

10.9 Using Theorem 10.2, Part 5

$|\text{Ker } f| = 2$, but f is not a 2-to-1 mapping because only one element in \mathbb{Z}_{12}, 3, is mapped to $9 \in \mathbb{Z}_{10}$. A 2-to-1 mapping would send exactly two elements in \mathbb{Z}_{12} to each element in \mathbb{Z}_{10}.

10.10 Using Theorem 10.2, Part 6

$|\mathbb{Z}_{12}| = 12$. However, $f(\mathbb{Z}_{12}) = \{0, 3, 6, 9, 2, 5, 8, 1, 4, 7\} = \mathbb{Z}_{10}$, which has order 10. Since 10 does not divide 12, f cannot be a homomorphism.

10.11 Using Theorem 10.2, Part 7

Let $K = \{0, 5\}$ be a subgroup of \mathbb{Z}_{10}. Then $f^{-1}\{K\} = \{0, 10, 5\}$, which is not a subgroup of \mathbb{Z}_{12} (it is not closed).

Conclusion

f is not a homomorphism.

11 Chapter 10, Problem 51 (presented on 3/15 during a review session)

Let G be any group, $Z(G)$ be its center, and $\text{Inn}(G) = \{\phi_g : g \in G\}$, where ϕ_g is a function from G to G defined as follows: for any $x \in G$,

$$\phi_g(x) = gxg^{-1}.$$

The function ϕ_g is called the inner automorphism of G induced by g. Each element of g gives an inner automorphism, but it is possible to have two different elements g and h in G induce the same inner automorphism ($\phi_g(x) = \phi_h(x)$ for all $x \in G$). $\text{Inn}(G)$ is a group whose operation is function composition read from right to left.

To prove that

$$G/Z(G) \approx \text{Inn}(G),$$

we need to find a function f from G to $\text{Inn}(G)$ with the following properties:
1. \(f \) is a homomorphism (preserves operations).

2. \(f \) is onto. That is, \(f(G) = \text{Inn}(G) \).

3. \(\text{Ker} f = Z(G) \).

Once these three properties are proven, we can apply the First Isomorphism Theorem on page 207 to show that

\[G/Z(G) \cong \text{Inn}(G). \]

Again, when using the First Isomorphism Theorem, the domain of the homomorphism is \(G \), not \(G/Z(G) \).

For \(g \in G \), define

\[f(g) = \phi_g. \]

In other words, \(f(g) \) is the inner automorphism of \(G \) induced by \(g \).

11.1 \(f \) is a homomorphism

Let \(g, h \in G \). Then

\[
\begin{align*}
 f(gh) &= \phi_{gh}, \\
 f(g)f(h) &= \phi_g \circ \phi_h
\end{align*}
\]

In order to show that \(f(gh) = f(g)f(h) \), we need to prove that the functions \(\phi_{gh} \) and \(\phi_g \circ \phi_h \) are equal. To do this, let \(x \in G \). Then

\[
\phi_{gh}(x) = (gh)x(gh)^{-1} = ghxh^{-1}g^{-1}
\]

and

\[
\phi_g \circ \phi_h(x) = \phi_g(hxh^{-1}) = g(hxh^{-1})g^{-1} = ghxh^{-1}g^{-1}.
\]

Thus, \(\phi_{gh}(x) = \phi_g \circ \phi_h(x) \) for any \(x \in G \). Hence the functions \(\phi_{gh} \) and \(\phi_g \circ \phi_h \) are equal, so \(f(gh) = f(g)f(h) \). Therefore, \(f \) preserves the operations, so it is a homomorphism.

11.2 \(f \) is onto (so \(f(G) = \text{Inn}(G) \))

Let \(\phi_g \) be any element of \(\text{Inn}(G) \). Then \(\phi_g \) is the inner automorphism of \(G \) induced by \(g \in G \). Then by definition,

\[f(g) = \phi_g, \]

so \(f \) is onto.
11.3 Ker $f = Z(G)$

Before we begin, let us point out that the identity element of Inn(G) is ϕ_e, the function given by

$$\phi_e(x) = exe^{-1} = x.$$

To determine Ker f, we start by looking at an element $g \in$ Ker f. Then $f(g)$ is the identity element of Inn(G):

$$f(g) = \phi_e.$$

We need to show that $g \in Z(G)$. Since $f(g) = \phi_g$, we have

$$\phi_g = \phi_e.$$

Therefore, for any $x \in G$, we have

$$gxg^{-1} = exe^{-1} = x$$
$$gxg^{-1} = x$$
$$gx = xg.$$

Therefore, $g \in Z(G)$. This implies that Ker $f \subseteq Z(G)$.

Now, if $g \in Z(G)$, then for any $x \in G$, $gx = xg$, so

$$\phi_g(x) = gxg^{-1} = (gx)g^{-1} = (xg)g^{-1} = x(gg^{-1}) = x = exe^{-1} = \phi_e(x)$$

so

$$f(g) = \phi_g = \phi_e,$$

and hence $g \in$ Ker f. Thus, $Z(G) \subseteq$ Ker f, and therefore Ker $f = Z(G)$.

11.4 Conclusion

Since f is a homomorphism, we can use Theorem 10.3 on page 207 to say

$$G/\text{Ker} f \approx f(G).$$

Since $f(G) = \text{Inn}(G)$, and Ker $f = Z(G)$, we have

$$G/Z(G) \approx \text{Inn}(G).$$