Problem set 3

Do for Monday, January 29. (To be handed in at section, or before.)

Rudin, p. 43: #5, #9(d,e,f), #10, #14

Also:
1. If E_1 and E_2 are subsets of a metric space X such that $E_1 \subset E_2$ and E_1 is dense in X, show that E_2 is dense in X.
 Hint: It’s easy!

2. For \mathbb{R}^2, consider the following two different metrics. Let d be the usual distance in the plane, and let ρ be the metric given by
 $$\rho((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$
 Show that a subset of \mathbb{R}^2 is open with respect to one metric if and only if it is open with respect to the other.